Evaluating operator performance in aided airborne mine detection

Sanjeev Agarwal*, Madhu Reddy, Richard Hall, Thomas Woodard, John Brown, Anh Trang

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

5 Scopus citations

Abstract

In this paper we evaluate mine level detection performance of the human operator using high resolution mid-wave infrared (MWIR) imagery and compare it with the performance of automatic target recognition (ATR) like RX detector. Previous studies have shown that the anomaly detectors like the RX detector and even more sophisticated ATR techniques fall short of the performance achieved by human analyst for mine and minefield detection. There are three main objectives of the paper. First, we seek to establish performance bounds for mine detection using a single MWIR sensor under different conditions. Second, we evaluate the conditions under which the human visual system contributes significantly over and above RX anomaly detector. Third, we seek to qualitatively study the visual processes and mental models employed by the human operators to detect mines. A graphical user interface (HILgui) was developed using MATLAB to evaluate mine level detection performance for the operator. This interface is used to conduct a series of experiments examining performance for twenty subjects. The mine images varied systematically based on the time of day the images were collected, the type of terrain and type of mines. All the experiments were video-recorded and post-experiment interviews were conducted for qualitative analysis. Both qualitative and quantitative research techniques were used to gather and analyze the data. Results from different quantitative analysis including the accuracy of mine detection, propensity of false alarms and the time taken by the operator to mark individual targets are discussed. The mental models developed by the subjects for detection of mine targets are also discussed. Limitations of the current experiments and plans for future work are discussed. It is hoped that this systematic evaluation of a human operator in airborne mine detection will help in developing new and better ATR techniques and help identify critical features required in the operator interface for the warfighter-in-the-loop (WIL) minefield detection.

Original languageEnglish (US)
Article number11
Pages (from-to)102-112
Number of pages11
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume5794
Issue numberPART I
DOIs
StatePublished - Oct 24 2005
EventDetection and Remediation Technologies for Mines and Minelike Targets X - Orlando, FL, United States
Duration: Mar 28 2005Apr 1 2005

Keywords

  • Airborne minefield detection
  • Human factors
  • Mental models
  • Qualitative evaluation
  • Target detection
  • Warfighter-in-the-loop

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Evaluating operator performance in aided airborne mine detection'. Together they form a unique fingerprint.

Cite this