Evaluating the partial contribution of the P3 event-related potential elicited by auditory oddball stimuli during the Stroop task

Margaret M. Swerdloff*, Levi J. Hargrove

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The cognitive load of a precisely timed task, such as the Stroop task, may be measured through the use of event-related potentials (ERPs). To determine the time at which cognitive load is at its peak, oddball tones may be applied at various times surrounding a cognitive task. However, we need to determine whether the simultaneous presentation of auditory and visual stimuli would mask a potential change in P3 in an ERP-producing task. If the contribution of the Stroop stimulus is too large, then Stroop ERP with oddball stimuli occurring at different timepoints may not be directly comparable across the various timepoints due to the contribution of the Stroop ERP. The aim of this study was to measure the magnitude of the difference wave between that of simultaneously presented stimuli and that of linearly added stimuli of separate responses. Participants were fitted with a dry-sensor EEG cap and were presented with a series of Stroop and auditory stimuli. For some Stroop stimuli, auditory stimuli occurred simultaneously or in a close time proximity to the Stroop stimuli. We sought to estimate the linear contribution of the ERP from Stroop and oddball stimuli. We found that the magnitude of the difference waves were 3.07 ± 1.65 μV and 2.82 ± 1.34 μV for congruent and incongruent stimuli, respectively. As the average amplitude in the P3 region for both the congruent and incongruent difference waves was lower than the magnitude of the auditory oddball presented simultaneously with Stroop stimuli (12.13 ± 1.00 μV for congruent and 11.78 ± 1.05 μV for incongruent Stroop), we expect that the contribution of P3 auditory oddball would not mask a potential Stroop effect even if the timing of the auditory oddball stimuli were experimentally manipulated, a direction that we hope to explore in future work. In conclusion, we determine this paradigm is suitable for measuring cognitive load in precisely timed tasks.Clinical Relevance - This study establishes the efficacy of presenting a Stroop task as a proxy for a cognitive challenge that could cause cognitive overload.

Original languageEnglish (US)
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: Jul 24 2023Jul 27 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period7/24/237/27/23

Funding

ACKNOWLEDGMENT This work was supported by NIH grant T32 HD07418. The authors would like to thank Minjae Kim and J.D. Peiffer for editing of this manuscript.

ASJC Scopus subject areas

  • Signal Processing
  • Health Informatics
  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Evaluating the partial contribution of the P3 event-related potential elicited by auditory oddball stimuli during the Stroop task'. Together they form a unique fingerprint.

Cite this