TY - JOUR
T1 - Evaluating the state of the art in missing data imputation for clinical data
AU - Luo, Yuan
N1 - Funding Information:
National Library of Medicine (R01LM013337).
Publisher Copyright:
© The Author(s) 2021. Published by Oxford University Press.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Clinical data are increasingly being mined to derive new medical knowledge with a goal of enabling greater diagnostic precision, better-personalized therapeutic regimens, improved clinical outcomes and more efficient utilization of health-care resources. However, clinical data are often only available at irregular intervals that vary between patients and type of data, with entries often being unmeasured or unknown. As a result, missing data often represent one of the major impediments to optimal knowledge derivation from clinical data. The Data Analytics Challenge on Missing data Imputation (DACMI) presented a shared clinical dataset with ground truth for evaluating and advancing the state of the art in imputing missing data for clinical time series. We extracted 13 commonly measured blood laboratory tests. To evaluate the imputation performance, we randomly removed one recorded result per laboratory test per patient admission and used them as the ground truth. DACMI is the first shared-task challenge on clinical time series imputation to our best knowledge. The challenge attracted 12 international teams spanning three continents across multiple industries and academia. The evaluation outcome suggests that competitive machine learning and statistical models (e.g. LightGBM, MICE and XGBoost) coupled with carefully engineered temporal and cross-sectional features can achieve strong imputation performance. However, care needs to be taken to prevent overblown model complexity. The challenge participating systems collectively experimented with a wide range of machine learning and probabilistic algorithms to combine temporal imputation and cross-sectional imputation, and their design principles will inform future efforts to better model clinical missing data.
AB - Clinical data are increasingly being mined to derive new medical knowledge with a goal of enabling greater diagnostic precision, better-personalized therapeutic regimens, improved clinical outcomes and more efficient utilization of health-care resources. However, clinical data are often only available at irregular intervals that vary between patients and type of data, with entries often being unmeasured or unknown. As a result, missing data often represent one of the major impediments to optimal knowledge derivation from clinical data. The Data Analytics Challenge on Missing data Imputation (DACMI) presented a shared clinical dataset with ground truth for evaluating and advancing the state of the art in imputing missing data for clinical time series. We extracted 13 commonly measured blood laboratory tests. To evaluate the imputation performance, we randomly removed one recorded result per laboratory test per patient admission and used them as the ground truth. DACMI is the first shared-task challenge on clinical time series imputation to our best knowledge. The challenge attracted 12 international teams spanning three continents across multiple industries and academia. The evaluation outcome suggests that competitive machine learning and statistical models (e.g. LightGBM, MICE and XGBoost) coupled with carefully engineered temporal and cross-sectional features can achieve strong imputation performance. However, care needs to be taken to prevent overblown model complexity. The challenge participating systems collectively experimented with a wide range of machine learning and probabilistic algorithms to combine temporal imputation and cross-sectional imputation, and their design principles will inform future efforts to better model clinical missing data.
KW - clinical laboratory test
KW - machine learning
KW - missing data imputation
KW - time series
UR - http://www.scopus.com/inward/record.url?scp=85121666699&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121666699&partnerID=8YFLogxK
U2 - 10.1093/bib/bbab489
DO - 10.1093/bib/bbab489
M3 - Article
C2 - 34882223
AN - SCOPUS:85121666699
SN - 1467-5463
VL - 23
JO - Briefings in Bioinformatics
JF - Briefings in Bioinformatics
IS - 1
M1 - bbab489
ER -