Abstract
To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 × 1034cm−2s−1 in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionising energy loss of up to Φeq= 3.5 × 1016cm−2. This paper focuses on planar pixel sensor design and qualification up to a fluence of Φeq = 1.4 × 1016cm−2. For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150mm (6”) wafers with an active thickness of 150µm with pixel sizes of 100×25 µm2 and 50×50 µm2 manufactured by Hamamatsu Photonics K.K. (HPK). Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfil the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50×50 µm2 pixels is measured as 4.0µm for non-irradiated samples, and 6.3µm after irradiation to Φeq = 7.2 × 1015cm−2.
Original language | English (US) |
---|---|
Article number | 168326 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 1053 |
DOIs | |
State | Published - Aug 2023 |
Funding
This work was supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the “FIS-Projekt - Fortführung des CMS-Experiments zum Einsatz am HL-LHC: Verbesserung des Spurdetektors für das Phase-2 Upgrade des CMS-Experiments” and supported by the H2020 project AIDA-2020, GA no. 654168. The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF). The tracker groups gratefully acknowledge financial support from the following funding agencies: BMWFW and FWF (Austria); FNRS, Belgium and FWO (Belgium); CERN, Switzerland; MSE and CSF (Croatia); Academy of Finland, Finland, MEC, Canada, and HIP (Finland); CEA, United States and CNRS/IN2P3 (France); BMBF, DFG, United States, and HGF (Germany); GSRT (Greece); NKFIA K124850, and Bolyai Fellowship of the Hungarian Academy of Sciences (Hungary); DAE, India and DST (India); INFN (Italy); PAEC (Pakistan); SEIDI, Spain, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); STFC (United Kingdom); DOE and NSF (U.S.A.). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 884104 (PSI-FELLOW-III-3i). Individuals have received support from HFRI (Greece).
Keywords
- CMS
- HL-LHC
- Pixel
- Radiation hardness
- Sensors
- Silicon
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Instrumentation