TY - GEN
T1 - Evaluation of segmentation algorithms for vessel wall detection in echo particle image velocimetry
AU - Zhang, F.
AU - Murta, L. O.
AU - Chen, J. S.
AU - Barker, A. J.
AU - Mazzaro, L.
AU - Lanning, C.
AU - Shandas, R.
PY - 2009
Y1 - 2009
N2 - Recent in-vitro and in-vivo validation studies confirmed the accuracy of echo particle image velocimetry (echo PIV), a simple non-invasive means of measuring multi-component blood velocity vectors. Echo PIV should also be useful for direct measurement of wall shear stress (WSS) in clinical studies. However, calculation of WSS requires accurate delineation of vessel walls in ultrasound images, which may be problematic when conventional segmentation techniques are used. In this paper, we proposed two methods for segmenting contrast enhanced B-mode images. The first is based on the intensity profile of ultrasound images, termed intensity-based edge detection (IBED) and the second based on the movement of microbubbles, termed movement-based quadratic difference (MBQD). The parameters related with the two methods were optimized over large sets of microbubble images acquired from human carotid vessels using an echo PIV system (Illumasonix LLC, Boulder, CO). A validation study on the two algorithms was carried out against manual delineations on both common carotid artery (CCA) and carotid bifurcation images, with 20 frames for each group. The inter-observer variability of three manual delineations, in pixels (about 80 μm/pixel), was 0.9±0.4, 1.3±0.6, 1.3±0.6 on CCA images, and 2.5±1.0, 3.9±1.1, 2.3±1.1 on bifurcation images. The absolute difference (mean±SD) between each computer-generated contour and the ground truths, taken as the average of three manual delineations, were 1.3±0.8, 3.8±0.8, 5.3±0.5 on CCA images, and 2.3±0.9, 4.6±1.3, 6.3±0.6 on bifurcation images, for the MBQD, IBED and active contour methods, respectively. The MBQD method shows comparable performance with manual delineations on particle images even with poor intima-media layer quality.
AB - Recent in-vitro and in-vivo validation studies confirmed the accuracy of echo particle image velocimetry (echo PIV), a simple non-invasive means of measuring multi-component blood velocity vectors. Echo PIV should also be useful for direct measurement of wall shear stress (WSS) in clinical studies. However, calculation of WSS requires accurate delineation of vessel walls in ultrasound images, which may be problematic when conventional segmentation techniques are used. In this paper, we proposed two methods for segmenting contrast enhanced B-mode images. The first is based on the intensity profile of ultrasound images, termed intensity-based edge detection (IBED) and the second based on the movement of microbubbles, termed movement-based quadratic difference (MBQD). The parameters related with the two methods were optimized over large sets of microbubble images acquired from human carotid vessels using an echo PIV system (Illumasonix LLC, Boulder, CO). A validation study on the two algorithms was carried out against manual delineations on both common carotid artery (CCA) and carotid bifurcation images, with 20 frames for each group. The inter-observer variability of three manual delineations, in pixels (about 80 μm/pixel), was 0.9±0.4, 1.3±0.6, 1.3±0.6 on CCA images, and 2.5±1.0, 3.9±1.1, 2.3±1.1 on bifurcation images. The absolute difference (mean±SD) between each computer-generated contour and the ground truths, taken as the average of three manual delineations, were 1.3±0.8, 3.8±0.8, 5.3±0.5 on CCA images, and 2.3±0.9, 4.6±1.3, 6.3±0.6 on bifurcation images, for the MBQD, IBED and active contour methods, respectively. The MBQD method shows comparable performance with manual delineations on particle images even with poor intima-media layer quality.
KW - Arteiral wall detection
KW - Echo PIV
KW - Segmentation
KW - Ultrasound particle image
KW - Wall shear stress
UR - http://www.scopus.com/inward/record.url?scp=77952852040&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952852040&partnerID=8YFLogxK
U2 - 10.1109/ULTSYM.2009.5441630
DO - 10.1109/ULTSYM.2009.5441630
M3 - Conference contribution
AN - SCOPUS:77952852040
SN - 9781424443895
T3 - Proceedings - IEEE Ultrasonics Symposium
SP - 2476
EP - 2479
BT - 2009 IEEE International Ultrasonics Symposium and Short Courses, IUS 2009
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2009 IEEE International Ultrasonics Symposium, IUS 2009
Y2 - 20 September 2009 through 23 September 2009
ER -