Evidence for Collective Multiparticle Correlations in p-Pb Collisions

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, M. Friedl, R. Frühwirth, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krammer, I. Krätschmer, D. Liko, I. MikulecD. Rabady, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C. E. Wulz, V. Mossolov, N. Shumeiko, J. Suarez Gonzalez, S. Alderweireldt, S. Bansal, T. Cornelis, E. A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck, F. Blekman, S. Blyweert, J. D'Hondt, N. Daci

Research output: Contribution to journalArticlepeer-review

166 Scopus citations

Abstract

The second-order azimuthal anisotropy Fourier harmonics, v2, are obtained in p-Pb and PbPb collisions over a wide pseudorapidity (η) range based on correlations among six or more charged particles. The p-Pb data, corresponding to an integrated luminosity of 35nb-1, were collected during the 2013 LHC p-Pb run at a nucleon-nucleon center-of-mass energy of 5.02TeV by the CMS experiment. A sample of semiperipheral PbPb collision data at sNN=2.76TeV, corresponding to an integrated luminosity of 2.5μb-1 and covering a similar range of particle multiplicities as the p-Pb data, is also analyzed for comparison. The six- and eight-particle cumulant and the Lee-Yang zeros methods are used to extract the v2 coefficients, extending previous studies of two- and four-particle correlations. For both the p-Pb and PbPb systems, the v2 values obtained with correlations among more than four particles are consistent with previously published four-particle results. These data support the interpretation of a collective origin for the previously observed long-range (large Δη) correlations in both systems. The ratios of v2 values corresponding to correlations including different numbers of particles are compared to theoretical predictions that assume a hydrodynamic behavior of a p-Pb system dominated by fluctuations in the positions of participant nucleons. These results provide new insights into the multiparticle dynamics of collision systems with a very small overlapping region.

Original languageEnglish (US)
Article number012301
JournalPhysical review letters
Volume115
Issue number1
DOIs
StatePublished - Jun 29 2015

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Evidence for Collective Multiparticle Correlations in p-Pb Collisions'. Together they form a unique fingerprint.

Cite this