Evidence for magnetic weyl fermions in a correlated metal

K. Kuroda, T. Tomita, M. T. Suzuki, C. Bareille, A. A. Nugroho, Pallab Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. ShinTakeshi Kondo, S. Nakatsuji*

*Corresponding author for this work

Research output: Contribution to journalLetterpeer-review

389 Scopus citations

Abstract

Weyl fermions1–3 have been observed as three-dimensional, gapless topological excitations inweakly correlated, inversionsymmetry- breaking semimetals4,5. However, their realization in spontaneously time-reversal-symmetry-breaking phases of strongly correlated materials has so far remained hypothetical2,6,7. Here, we report experimental evidence for magnetic Weyl fermions in Mn3Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature8. Detailed comparison between angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Magnetotransport measurements provide strong evidence for the chiral anomaly of Weyl fermions—namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. Since weak magnetic fields (approximately 10 mT) are adequate to control the distribution ofWeyl points and the large fictitious fields (equivalent to approximately a few hundred T) produced by them in momentum space, our discovery lays the foundation for a new field of science and technology involving the magneticWeyl excitations of strongly correlated electron systems such as Mn3Sn.

Original languageEnglish (US)
Pages (from-to)1090-1095
Number of pages6
JournalNature materials
Volume16
Issue number11
DOIs
StatePublished - Sep 25 2017

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Chemistry(all)
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Evidence for magnetic weyl fermions in a correlated metal'. Together they form a unique fingerprint.

Cite this