TY - JOUR
T1 - Ex vivo-expanded natural CD4+CD25+ regulatory T cells synergize with host T-cell depletion to promote long-term survival of allografts
AU - Xia, G.
AU - He, J.
AU - Leventhal, J. R.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2008/2
Y1 - 2008/2
N2 - Foxp3+CD4+CD25+ natural regulatory T (nTreg) cells have been shown in immunodeficient mice to suppress allograft rejection after adoptive cotransfer. We hypothesized that immunotherapy using ex vivo-expanded nTreg could suppress allograft rejection in wild-type mice. Donor alloantigen (alloAg) specificity of naive splenic nTreg was enriched in vitro by culturing with anti-CD3/CD28-coated Dynabeads plus bone marrow-derived dendritic cells (BM-DC) in the presence of interleukin (IL)-2 or IL-2 plus transforming growth factor (TGF)-β. On average, 96.2% fresh CD4+CD25+ nT reg were intracellular Foxp3+. By d+20 in culture, 6.4% nTreg were Foxp3+ following expansion with IL-2 alone, and 14.4% or 19.7% nTreg were Foxp3+ when expanded with IL-2 plus 0.5 or 2.5 ng/mL TGF-β, respectively. In vitro, alloAg-enriched, TGF-β/IL-2-conditioned nTreg exerted stronger donor alloAg-specific suppression than cells with IL-2 alone in mixed lymphocyte reaction (MLR) assays. In vivo, alloAg-enriched, TGF-β/IL-2-conditioned nTreg expressed high-level Foxp3 following infusion, effectively overcame acute rejection and induced long-term survival of donor but not third-party heart allografts in peritransplant host T-cell-depleted mice. Long-term surviving allografts were noted to possess Foxp3+ graft-infiltrating cells of exogenous and endogenous origins. In conjunction with transient host T-cell depletion, therapeutic use of ex vivo-expanded nTreg may be a practical means of preventing acute allograft rejection.
AB - Foxp3+CD4+CD25+ natural regulatory T (nTreg) cells have been shown in immunodeficient mice to suppress allograft rejection after adoptive cotransfer. We hypothesized that immunotherapy using ex vivo-expanded nTreg could suppress allograft rejection in wild-type mice. Donor alloantigen (alloAg) specificity of naive splenic nTreg was enriched in vitro by culturing with anti-CD3/CD28-coated Dynabeads plus bone marrow-derived dendritic cells (BM-DC) in the presence of interleukin (IL)-2 or IL-2 plus transforming growth factor (TGF)-β. On average, 96.2% fresh CD4+CD25+ nT reg were intracellular Foxp3+. By d+20 in culture, 6.4% nTreg were Foxp3+ following expansion with IL-2 alone, and 14.4% or 19.7% nTreg were Foxp3+ when expanded with IL-2 plus 0.5 or 2.5 ng/mL TGF-β, respectively. In vitro, alloAg-enriched, TGF-β/IL-2-conditioned nTreg exerted stronger donor alloAg-specific suppression than cells with IL-2 alone in mixed lymphocyte reaction (MLR) assays. In vivo, alloAg-enriched, TGF-β/IL-2-conditioned nTreg expressed high-level Foxp3 following infusion, effectively overcame acute rejection and induced long-term survival of donor but not third-party heart allografts in peritransplant host T-cell-depleted mice. Long-term surviving allografts were noted to possess Foxp3+ graft-infiltrating cells of exogenous and endogenous origins. In conjunction with transient host T-cell depletion, therapeutic use of ex vivo-expanded nTreg may be a practical means of preventing acute allograft rejection.
KW - Anti-Thy1 model
KW - Cell therapy
KW - Immunoregulatory T lymphocytes
KW - Induction of graft tolerance
KW - TGF-ß
UR - http://www.scopus.com/inward/record.url?scp=38149050594&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38149050594&partnerID=8YFLogxK
U2 - 10.1111/j.1600-6143.2007.02088.x
DO - 10.1111/j.1600-6143.2007.02088.x
M3 - Article
C2 - 18190656
AN - SCOPUS:38149050594
VL - 8
SP - 298
EP - 306
JO - American Journal of Transplantation
JF - American Journal of Transplantation
SN - 1600-6135
IS - 2
ER -