Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F+D2 → FD+D reaction

George C. Schatz*, Joel M. Bowman, Aron Kuppermann

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

77 Scopus citations

Abstract

Exact quantum, quasiclassical, and semiclassical reaction probabilities and rate constants for the collinear reaction F+D2 → FD+D are presented. In all calculations, a high degree of population inversion is predicted with P03R and P04R being the dominant reaction probabilities. In analogy with the F+H2 reaction (preceding paper), the exact quantum 0→3 and 0→4 probabilities show markedly different energy dependence with P03 R having a much smaller effective threshold energy (ET = 0.014 eV) than P04R (0.055 eV). The corresponding quasiclassical forward probabilities P03R and P 04R are in poor agreement with the exact quantum ones, while their quasiclassical reverse and semiclassical counterparts provide much better approximations to the exact results. Similar comparisons are also made in the analysis of the corresponding EQ, QCF, QCR, and USC rate constants. An information theoretic analysis of the EQ and QCF reaction probabilities indicates nonlinear surprisal behavior as well as a significant isotope dependence. Additional quantum results at higher energies are presented and discussed in terms of threshold behavior and resonances. Exact quantum reaction probabilities for the related F+HD → FH+D and F+DH → FD+H reactions are given and an attempt to explain the observed isotope effects is made.

Original languageEnglish (US)
Pages (from-to)685-696
Number of pages12
JournalThe Journal of Chemical Physics
Volume63
Issue number2
DOIs
StatePublished - 1975

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F+D2 → FD+D reaction'. Together they form a unique fingerprint.

Cite this