Abstract
Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either has infinitely many rational curves or X has infinitely many unirational specialisations. Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K.
Original language | English (US) |
---|---|
Article number | e21 |
Journal | Forum of Mathematics, Pi |
Volume | 10 |
DOIs | |
State | Published - Sep 26 2022 |
Funding
A.N.S. is partially supported by the NSF grant DMS-2100436. A.S. is supported by an NSERC Discovery grant and a Sloan fellowship. Y.T. is partially supported by the NSF grant DMS-1801237. S.T. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 715747).
ASJC Scopus subject areas
- Analysis
- Algebra and Number Theory
- Statistics and Probability
- Mathematical Physics
- Geometry and Topology
- Discrete Mathematics and Combinatorics