Excisional Wound Healing Is Delayed in a Murine Model of Chronic Kidney Disease

Akhil K. Seth, Mauricio De la Garza, Robert C. Fang, Seok J. Hong, Robert D. Galiano

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Background: Approximately 15% of the United States population suffers from chronic kidney disease (CKD), often demonstrating an associated impairment in wound healing. This study outlines the development of a surgical murine model of CKD in order to investigate the mechanisms underlying this impairment. Methods: CKD was induced in mice by partial cauterization of one kidney cortex and contralateral nephrectomy, modifying a previously published technique. After a minimum of 6-weeks, splinted, dorsal excisional wounds were created to permit assessment of wound healing parameters. Wounds were harvested on postoperative days (POD) 0, 3, 7, and 14 for histological, immunofluorescent, and quantitative PCR (qPCR). Results: CKD mice exhibited deranged blood chemistry and hematology profiles, including profound uremia and anemia. Significant decreases in re-epithelialization and granulation tissue deposition rates were found in uremic mice wounds relative to controls. On immunofluorescent analysis, uremic mice demonstrated significant reductions in cellular proliferation (BrdU) and angiogenesis (CD31), with a concurrent increase in inflammation (CD45) as compared to controls. CKD mice also displayed differential expression of wound healing-related genes (VEGF, IL-1β, eNOS, iNOS) on qPCR. Conclusions: These findings represent the first reported investigation of cutaneous healing in a CKD animal model. Ongoing studies of this significantly delayed wound healing phenotype include the establishment of renal failure model in diabetic strains to study the combined effects of CKD and diabetes.

Original languageEnglish (US)
Article numbere59979
JournalPloS one
Issue number3
StatePublished - Mar 25 2013

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'Excisional Wound Healing Is Delayed in a Murine Model of Chronic Kidney Disease'. Together they form a unique fingerprint.

Cite this