TY - JOUR
T1 - Experimental and theoretical investigations of the inelastic and reactive scattering dynamics of O( 3P) + D 2
AU - Garton, Donna J.
AU - Brunsvold, Amy L.
AU - Minton, Timothy K.
AU - Troya, Diego
AU - Maiti, Biswajit
AU - Schatz, George C
PY - 2006/2/2
Y1 - 2006/2/2
N2 - This paper presents a combined experimental and theoretical study of the dynamics of O( 3P) + D 2 collisions, with emphasis on a center-of-mass (c.m.) collision energy of 25 kcal mol -1. The experiments were conducted with a crossed-molecular-beams apparatus, employing a laser detonation source to produce hyperthermal atomic oxygen and mass spectrometric detection to measure the product angular and time-of-flight distributions. The novel beam source, which enabled these experiments to be conducted, contributed unique challenges to the experiments and to the analysis, so the experimental methods and approach to the analysis are discussed in detail. Three different levels of theory were used: (1) quasiclassical trajectories (QCT), (2) time-independent quantum scattering calculations based on high-quality potential surfaces for the two lower-energy triplet states, and (3) trajectory-surface-hopping (TSH) studies that couple the triplet surfaces with the lowest singlet surface using a spin - orbit Hamiltonian derived from ab-initio calculations. The latter calculations explore the importance of intersystem crossing in the dynamics. Both experiment and theory show that inelastically scattered O atoms scatter almost exclusively in the forward direction, with little or no loss of translational energy. For the reaction, O( 3P) + D 2 → OD + D, the experiment shows that, on average, ∼50% of the available energy goes into product translation and that the OD product angular distributions are largely backward-peaked. These results may be interpreted in light of the QCT and TSH calculations, leading to the conclusion that the reaction occurs mainly on triplet potential energy surfaces with, at most, minor intersystem crossing to a singlet surface. Reaction on either of the two low-lying reactive triplet surfaces proceeds through a rebound mechanism in which the angular distributions are backward-peaked and the product OD is both vibrationally and rotationally excited. The quantum scattering results are in good agreement with QCT calculations, indicating that quantum effects are relatively small for this reaction at a collision energy of 25 kcal mol -1.
AB - This paper presents a combined experimental and theoretical study of the dynamics of O( 3P) + D 2 collisions, with emphasis on a center-of-mass (c.m.) collision energy of 25 kcal mol -1. The experiments were conducted with a crossed-molecular-beams apparatus, employing a laser detonation source to produce hyperthermal atomic oxygen and mass spectrometric detection to measure the product angular and time-of-flight distributions. The novel beam source, which enabled these experiments to be conducted, contributed unique challenges to the experiments and to the analysis, so the experimental methods and approach to the analysis are discussed in detail. Three different levels of theory were used: (1) quasiclassical trajectories (QCT), (2) time-independent quantum scattering calculations based on high-quality potential surfaces for the two lower-energy triplet states, and (3) trajectory-surface-hopping (TSH) studies that couple the triplet surfaces with the lowest singlet surface using a spin - orbit Hamiltonian derived from ab-initio calculations. The latter calculations explore the importance of intersystem crossing in the dynamics. Both experiment and theory show that inelastically scattered O atoms scatter almost exclusively in the forward direction, with little or no loss of translational energy. For the reaction, O( 3P) + D 2 → OD + D, the experiment shows that, on average, ∼50% of the available energy goes into product translation and that the OD product angular distributions are largely backward-peaked. These results may be interpreted in light of the QCT and TSH calculations, leading to the conclusion that the reaction occurs mainly on triplet potential energy surfaces with, at most, minor intersystem crossing to a singlet surface. Reaction on either of the two low-lying reactive triplet surfaces proceeds through a rebound mechanism in which the angular distributions are backward-peaked and the product OD is both vibrationally and rotationally excited. The quantum scattering results are in good agreement with QCT calculations, indicating that quantum effects are relatively small for this reaction at a collision energy of 25 kcal mol -1.
UR - http://www.scopus.com/inward/record.url?scp=32544447109&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=32544447109&partnerID=8YFLogxK
U2 - 10.1021/jp054053k
DO - 10.1021/jp054053k
M3 - Article
C2 - 16435793
AN - SCOPUS:32544447109
SN - 1089-5639
VL - 110
SP - 1327
EP - 1341
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 4
ER -