Experimental effective shape control of a powered transfemoral prosthesis

Robert D. Gregg*, Tommaso Lenzi, Nicholas P. Fey, Levi J. Hargrove, Jonathon W. Sensinger

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

This paper presents the design and experimental implementation of a novel feedback control strategy that regulates effective shape on a powered transfemoral prosthesis. The human effective shape is the effective geometry to which the biological leg conforms - through movement of ground reaction forces and leg joints - during the stance period of gait. Able-bodied humans regulate effective shapes to be invariant across conditions such as heel height, walking speed, and body weight, so this measure has proven to be a very useful tool for the alignment and design of passive prostheses. However, leg joints must be actively controlled to assume different effective shapes that are unique to tasks such as standing, walking, and stair climbing. Using our previous simulation studies as a starting point, we model and control the effective shape as a virtual kinematic constraint on the powered Vanderbilt prosthetic leg with a custom instrumented foot. An able-bodied subject used a by-pass adapter to walk on the controlled leg over ground and over a treadmill. These preliminary experiments demonstrate, for the first time, that effective shape (or virtual constraints in general) can be used to control a powered prosthetic leg.

Original languageEnglish (US)
Title of host publication2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013
DOIs
StatePublished - Dec 31 2013
Event2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013 - Seattle, WA, United States
Duration: Jun 24 2013Jun 26 2013

Other

Other2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013
CountryUnited States
CitySeattle, WA
Period6/24/136/26/13

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Rehabilitation
  • Medicine(all)

Fingerprint Dive into the research topics of 'Experimental effective shape control of a powered transfemoral prosthesis'. Together they form a unique fingerprint.

Cite this