Abstract
Only a tiny fraction of the nanomedicine-design space has been explored, owing to the structural complexity of nanomedicines and the lack of relevant high-throughput synthesis and analysis methods. Here, we report a methodology for determining structure–activity relationships and design rules for spherical nucleic acids (SNAs) functioning as cancer-vaccine candidates. First, we identified ~1,000 candidate SNAs on the basis of reasonable ranges for 11 design parameters that can be systematically and independently varied to optimize SNA performance. Second, we developed a high-throughput method for making SNAs at the picomolar scale in a 384-well format, and used a mass spectrometry assay to rapidly measure SNA immune activation. Third, we used machine learning to quantitatively model SNA immune activation and identify the minimum number of SNAs needed to capture optimum structure–activity relationships for a given SNA library. Our methodology is general, can reduce the number of nanoparticles that need to be tested by an order of magnitude, and could serve as a screening tool for the development of nanoparticle therapeutics.
Original language | English (US) |
---|---|
Pages (from-to) | 318-327 |
Number of pages | 10 |
Journal | Nature Biomedical Engineering |
Volume | 3 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2019 |
Funding
Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under award number U54CA199091. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work made use of the IMSERC at Northwestern University, which has received support from Northwestern University and the State of Illinois.
ASJC Scopus subject areas
- Biotechnology
- Bioengineering
- Medicine (miscellaneous)
- Biomedical Engineering
- Computer Science Applications