TY - JOUR
T1 - Expression of ryanodine receptors in the pituitary gland
T2 - Evidence for a role in gonadotropin-releasing hormone signaling
AU - Sundaresan, S.
AU - Weiss, J.
AU - Bauer-Dantoin, A. C.
AU - Jameson, J. L.
PY - 1997
Y1 - 1997
N2 - GnRH elicits secretion of LH and FSH from gonadotropes by activating an array of intracellular signals including the generation of inositol triphosphate and the release of intracellular calcium. Given the important role of calcium in the secretory responses to GnRH, we examined the expression and function of the ryanodine receptors, which are known to modulate calcium release from intracellular stores. Using RT-PCR analysis, we found that ryanodine receptor (RyR) types 2 and 3, but not type 1, are expressed in rat pituitaries. Pulses of GnRH were administered to perifused primary rat pituitaries, cells in the presence or absence of a ryanodine receptor antagonist, ruthenium red, to assess effects on GnRH-mediated LH secretion. Treatment with ruthenium red resulted in a 40% decrease in the spike phase of GnRH-induced LH release and a 35% reduction in the plateau phase. Ruthenium red also inhibited GnRH-mediated transcription of a transfected α-LUC reporter plasmid. RyR messenger RNA (mRNA) expression varied during the rat estrous cycle with maximal levels following increases of progesterone. The effects of gonadal steroids (in pituitary RyR mRNA levels were examined directly in ovariectomized rats that were treated with estrogen (E), or estrogen and progesterone (P). In this paradigm, E decreased, whereas E + P increased RyR3 mRNA levels. These results indicate that RyR is expressed and hormonally regulated in the rat pituitary and suggest that it might play a role in mediating GnRH-induced gonadotropin synthesis and secretion.
AB - GnRH elicits secretion of LH and FSH from gonadotropes by activating an array of intracellular signals including the generation of inositol triphosphate and the release of intracellular calcium. Given the important role of calcium in the secretory responses to GnRH, we examined the expression and function of the ryanodine receptors, which are known to modulate calcium release from intracellular stores. Using RT-PCR analysis, we found that ryanodine receptor (RyR) types 2 and 3, but not type 1, are expressed in rat pituitaries. Pulses of GnRH were administered to perifused primary rat pituitaries, cells in the presence or absence of a ryanodine receptor antagonist, ruthenium red, to assess effects on GnRH-mediated LH secretion. Treatment with ruthenium red resulted in a 40% decrease in the spike phase of GnRH-induced LH release and a 35% reduction in the plateau phase. Ruthenium red also inhibited GnRH-mediated transcription of a transfected α-LUC reporter plasmid. RyR messenger RNA (mRNA) expression varied during the rat estrous cycle with maximal levels following increases of progesterone. The effects of gonadal steroids (in pituitary RyR mRNA levels were examined directly in ovariectomized rats that were treated with estrogen (E), or estrogen and progesterone (P). In this paradigm, E decreased, whereas E + P increased RyR3 mRNA levels. These results indicate that RyR is expressed and hormonally regulated in the rat pituitary and suggest that it might play a role in mediating GnRH-induced gonadotropin synthesis and secretion.
UR - http://www.scopus.com/inward/record.url?scp=0030993392&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030993392&partnerID=8YFLogxK
U2 - 10.1210/endo.138.5.5153
DO - 10.1210/endo.138.5.5153
M3 - Article
C2 - 9112405
AN - SCOPUS:0030993392
SN - 0013-7227
VL - 138
SP - 2056
EP - 2065
JO - Endocrinology
JF - Endocrinology
IS - 5
ER -