Extracellular matrix protein 1 gene (ECM1) mutations in lipoid proteinosis and genotype-phenotype correlation

Takahiro Hamada, Vesarat Wessagowit, Andrew P. South, Gabrielle H.S. Ashton, Ien Chan, Noritaka Oyama, Apatorn Siriwattana, Prachiya Jewhasuchin, Somyot Charuwichitratana, Devinder M. Thappa, Patsy Lenane, Bernice Krafchik, Kanokvalai Kulthanan, Hiroshi Shimizu, Tamer I. Kaya, Mehmet E. Erdal, Mauro Paradisi, Amy S. Paller, Mariko Seishima, Takashi HashimotoJohn A. McGrath*

*Corresponding author for this work

Research output: Contribution to journalArticle

100 Scopus citations

Abstract

The autosomal recessive disorder lipoid proteinosis results from mutations in extracellular matrix protein 1 (ECM1), a glycoprotein expressed in several tissues (including skin) and composed of two alternatively spliced isoforms, ECM1a and ECM1b, the latter lacking exon 7 of this 10-exon gene (ECM1). To date, mutations that either affect ECM1a alone or perturb both ECM1 transcripts have been demonstrated in six cases. However, lipoid proteinosis is clinically heterogeneous with affected individuals displaying differing degrees of skin scarring and infiltration, variable signs of hoarseness and respiratory distress, and in some cases neurological abnormalities such as temporal lobe epilepsy. In this study, we sequenced ECM1 in 10 further unrelated patients with lipoid proteinosis to extend genotype-phenotype correlation and to add to the mutation database. We identified seven new homozygous nonsense or frameshift mutations: R53X (exon 3); 243delG (exon 4); 507delT (exon 6); 735delTG (exon 7); 785delA (exon 7); 892delc (exon 7) and 1190insC (exon 8), as well as two new compound heterozygous mutations: W160X/F167I (exon 6) and 542insAA/R243X (exons 6/7), none of which were found in controls. The mutation 507delT occurred in two unrelated subjects on different ECM1 haplotypes and may therefore represent a recurrent mutation in lipoid proteinosis. Taken with the previously documented mutations in ECM1, this study supports the view that exons 6 and 7 are the most common sites for ECM1 mutations in lipoid proteinosis. Clinically, it appears that mutations outside exon 7 are usually associated with a slightly more severe mucocutaneous lipoid proteinosis phenotype, but neurological features do not show any specific genotype-phenotype correlation.

Original languageEnglish (US)
Pages (from-to)345-350
Number of pages6
JournalJournal of Investigative Dermatology
Volume120
Issue number3
DOIs
StatePublished - Mar 1 2003

Keywords

  • Alternative splicing
  • Genodermatosis
  • Hyalinosis cutis et mucosae

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Dermatology
  • Cell Biology

Fingerprint Dive into the research topics of 'Extracellular matrix protein 1 gene (ECM1) mutations in lipoid proteinosis and genotype-phenotype correlation'. Together they form a unique fingerprint.

Cite this