TY - JOUR
T1 - Extraction of user's navigation commands from upper body force interaction in walker assisted gait
AU - Frizera Neto, Anselmo
AU - Gallego, Juan A.
AU - Rocon, Eduardo
AU - Pons, Jose L
AU - Ceres, Ramón
N1 - Funding Information:
The authors would like to thank the Spanish National Program of R&D - DPI that supports the Simbiosis Project (DPI2005-07417). Written consent for publication was obtained from the patient or their relative. The SIMBIOSIS Project is placed in the framework of the Spanish National Program of R&D and it is approved, along with the experimental and validation procedures, by Spanish Ministry of Science and Innovation (MICINN).
PY - 2010/8/5
Y1 - 2010/8/5
N2 - Background: The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished.Results: For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 ± 0.358)·10-2 kgf) and delay ((1.897 ± 0.3697)·101ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters.Conclusions: The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.
AB - Background: The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished.Results: For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 ± 0.358)·10-2 kgf) and delay ((1.897 ± 0.3697)·101ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters.Conclusions: The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.
UR - http://www.scopus.com/inward/record.url?scp=77955976382&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955976382&partnerID=8YFLogxK
U2 - 10.1186/1475-925X-9-37
DO - 10.1186/1475-925X-9-37
M3 - Article
C2 - 20687921
AN - SCOPUS:77955976382
SN - 1475-925X
VL - 9
JO - BioMedical Engineering Online
JF - BioMedical Engineering Online
M1 - 37
ER -