Extremely cold positrons for antihydrogen production

L. Haarsma*, K. Abdullah, G. Gabrielse

*Corresponding author for this work

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

The storage of extremely cold (4 K) antiprotons in a Penning trap is an important step toward the creation and study of cold antihydrogen. The other required ingredient, the largest possible number of comparably cold positrons, is still lacking. These would be recombined in a high vacuum with the trapped antiprotons, already stored at a pressure below 5×10-17 Torr, thereby avoiding annihilation of the antihydrogen atoms before they can be used in high accuracy measurements or in controlled collision experiments. In an exploratory experiment, positrons from a 18 mCi22Na source follow fringing field lines of a 6 T superconducting solenoid through tiny apertures in the electrodes of a Penning trap to strike a tungsten (reflection) moderator. The positron beam is chopped mechanically and a lock-in directly detects a positron current of 2.5×106e+/s on the moderator. The use of a moderator, unlike an earlier experiment in which < 100 positrons were confined in vacuum, should greatly increase the number of positrons trapped in high vacuum.

Original languageEnglish (US)
Pages (from-to)143-150
Number of pages8
JournalHyperfine Interactions
Volume76
Issue number1
DOIs
StatePublished - Dec 1 1993

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Nuclear and High Energy Physics
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Extremely cold positrons for antihydrogen production'. Together they form a unique fingerprint.

  • Cite this