TY - JOUR
T1 - Fast photo-driven electron spin coherence transfer
T2 - The effect of electron-nuclear hyperfine coupling on coherence dephasing
AU - Krzyaniak, Matthew D.
AU - Kobr, Lukáš
AU - Rugg, Brandon K.
AU - Phelan, Brian T.
AU - Margulies, Eric A.
AU - Nelson, Jordan N.
AU - Young, Ryan M.
AU - Wasielewski, Michael R.
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2015.
PY - 2015/8/14
Y1 - 2015/8/14
N2 - Selective photoexcitation of the donor in an electron donor-acceptor1-acceptor2 (D-A1-A2) molecule, in which D = perylene and both A1 and A2 = naphthalene-1,8:4,5-bis(dicarboximide), results in sub-nanosecond formation of a spin-correlated singlet radical pair 1(D+•-A1-•-A2) having a large electron spin-spin exchange interaction, 2J, which precludes its observation by transient EPR spectroscopy. Subsequent selective photoexcitation of A1-• rapidly produces 1(D+•-A1-A2-•), resulting in a dramatic decrease in 2J, which allows coherent spin evolution to mix the singlet (S) radical pair state 1(D+•-A1-A2-•) with the T0 triplet sublevel of 3(D+•-A1-A2-•) in an applied magnetic field, where B 蠑 2J. A spin-polarized transient EPR spectrum characteristic of the spin-correlated radical pair D+•-A1-A2-• is then observed. The time delay between the two laser pulses was incremented to measure the rate of decoherence in 1(D+•-A1-•-A2) in toluene at 295 K, which was found to be 8.1 × 107 s-1. Deuteration of the perylene donor or the toluene solvent decreases the decoherence rate constant of 1(D+•-A1-•-A2) to 4.3 × 107 s-1 and 4.6 × 107 s-1, respectively, while deuteration of both the perylene donor and the toluene solvent reduced the decoherence rate constant by more than half to 3.4 × 107 s-1. The data show that decreasing electron-nuclear hyperfine interactions significantly increases the zero quantum coherence lifetime of the spin-correlated radical pair.
AB - Selective photoexcitation of the donor in an electron donor-acceptor1-acceptor2 (D-A1-A2) molecule, in which D = perylene and both A1 and A2 = naphthalene-1,8:4,5-bis(dicarboximide), results in sub-nanosecond formation of a spin-correlated singlet radical pair 1(D+•-A1-•-A2) having a large electron spin-spin exchange interaction, 2J, which precludes its observation by transient EPR spectroscopy. Subsequent selective photoexcitation of A1-• rapidly produces 1(D+•-A1-A2-•), resulting in a dramatic decrease in 2J, which allows coherent spin evolution to mix the singlet (S) radical pair state 1(D+•-A1-A2-•) with the T0 triplet sublevel of 3(D+•-A1-A2-•) in an applied magnetic field, where B 蠑 2J. A spin-polarized transient EPR spectrum characteristic of the spin-correlated radical pair D+•-A1-A2-• is then observed. The time delay between the two laser pulses was incremented to measure the rate of decoherence in 1(D+•-A1-•-A2) in toluene at 295 K, which was found to be 8.1 × 107 s-1. Deuteration of the perylene donor or the toluene solvent decreases the decoherence rate constant of 1(D+•-A1-•-A2) to 4.3 × 107 s-1 and 4.6 × 107 s-1, respectively, while deuteration of both the perylene donor and the toluene solvent reduced the decoherence rate constant by more than half to 3.4 × 107 s-1. The data show that decreasing electron-nuclear hyperfine interactions significantly increases the zero quantum coherence lifetime of the spin-correlated radical pair.
UR - http://www.scopus.com/inward/record.url?scp=84938099923&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938099923&partnerID=8YFLogxK
U2 - 10.1039/c5tc01446h
DO - 10.1039/c5tc01446h
M3 - Article
AN - SCOPUS:84938099923
SN - 2050-7534
VL - 3
SP - 7962
EP - 7967
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
IS - 30
ER -