TY - GEN
T1 - FDTD modeling of a coherent-Addition antenna array for early-stage detection of breast cancer
AU - Hagness, S. C.
AU - Taflove, A.
AU - Bridges, J. E.
N1 - Publisher Copyright:
© 1998 IEEE.
PY - 1998
Y1 - 1998
N2 - A novel pulsed microwave confocal system for the detection of breast cancer has been proposed by Hagness, Taflove and Bridges (see Proc. of the IEEE Engineering in Medicine and Biology, Society Conference, p.2506-8, Chicago, IL, 1997). An elliptical reflector focuses a microwave signal at a potential tumor site and efficiently collects the backscattered energy by refocusing it at the point of origin of the illumination. This technology is based upon two fundamental dielectric properties of breast tissues at microwave frequencies: (1) the large contrast in ϵr and σ between malignant and normal tissues, which causes tumors to have significantly greater microwave scattering cross sections than normal tissues of comparable geometry; and (2) the low attenuation in normal breast tissue (less than 4 dB/cm up to 10 GHz), which permits constructive addition of wideband backscattered returns using confocal-imaging techniques. We replace the fixed-focus elliptical reflector reported by Hagness et al. with a variable-focus antenna array and extend the range of breast tissue structures modeled to include small tumors obscured by veins and mammary glands and ducts.
AB - A novel pulsed microwave confocal system for the detection of breast cancer has been proposed by Hagness, Taflove and Bridges (see Proc. of the IEEE Engineering in Medicine and Biology, Society Conference, p.2506-8, Chicago, IL, 1997). An elliptical reflector focuses a microwave signal at a potential tumor site and efficiently collects the backscattered energy by refocusing it at the point of origin of the illumination. This technology is based upon two fundamental dielectric properties of breast tissues at microwave frequencies: (1) the large contrast in ϵr and σ between malignant and normal tissues, which causes tumors to have significantly greater microwave scattering cross sections than normal tissues of comparable geometry; and (2) the low attenuation in normal breast tissue (less than 4 dB/cm up to 10 GHz), which permits constructive addition of wideband backscattered returns using confocal-imaging techniques. We replace the fixed-focus elliptical reflector reported by Hagness et al. with a variable-focus antenna array and extend the range of breast tissue structures modeled to include small tumors obscured by veins and mammary glands and ducts.
UR - http://www.scopus.com/inward/record.url?scp=0031622295&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031622295&partnerID=8YFLogxK
U2 - 10.1109/APS.1998.702171
DO - 10.1109/APS.1998.702171
M3 - Conference contribution
AN - SCOPUS:0031622295
SN - 0780344782
SN - 9780780344785
T3 - IEEE Antennas and Propagation Society International Symposium, 1998 Digest - Antennas: Gateways to the Global Network - Held in conjunction with: USNC/URSI National Radio Science Meeting
SP - 1220
EP - 1223
BT - IEEE Antennas and Propagation Society International Symposium, 1998 Digest - Antennas
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 1998 IEEE Antennas and Propagation Society International Symposium, APSURSI 1998
Y2 - 21 June 1998 through 26 June 1998
ER -