Feasibility of multi-tenancy on intermittent power

Dimitris Patoukas, Kasim Sinan Yýldýrým, Amjad Yousef Majid, Josiah David Hester, Przemyslaw Pawełczak

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Energy harvesting and battery-free sensing devices show great promise for revolutionizing computing in the home, in the wild, and on the body. The promise of cheap, dense, and ubiquitous sensing technology brings new applications for the Internet of Things. However, the future programming model is blurry and complex. With a potential for trillions of devices, and thousands of devices per person on earth, programming languages and associated operating systems must be usable, flexible, and resource efficient. Because of the thousands of applications and fine grained differences in requirements, multi-tenancy may be a part of the solution to solving this programming model crisis. This paper explores the energy and resources costs, feasibility, and motivation for multi-tenancy on these tiniest of computing devices-namely the difficulties in scheduling tasks fairly, efficiently, and simply. Because of intermittent power, resources and energy must be mostly devoted towards user tasks, we implement a rudimentary operating system with low overhead to conduct experiments and test time-sharing and scheduling protocols. We close with a discussion on challenges to implementing a multi-tenant run-time on battery-free tags, and proposals for future work.

Original languageEnglish (US)
Title of host publicationENSsys 2018 - Proceedings of the 2018 International Workshop on Energy Harvesting and Energy-Neutral Sensing Systems, Part of SenSys 2018
EditorsKrishnamachari Bhaskar, Gowri Sankar Ramachandran
PublisherAssociation for Computing Machinery, Inc
Pages26-31
Number of pages6
ISBN (Electronic)9781450360470
DOIs
StatePublished - Nov 4 2018
Event6th International Workshop on Energy Harvesting and Energy Neutral Sensing Systems, ENSsys 2018, co-located with ACM SenSys 2018 - Shenzhen, China
Duration: Nov 4 2018 → …

Publication series

NameENSsys 2018 - Proceedings of the 2018 International Workshop on Energy Harvesting and Energy-Neutral Sensing Systems, Part of SenSys 2018

Conference

Conference6th International Workshop on Energy Harvesting and Energy Neutral Sensing Systems, ENSsys 2018, co-located with ACM SenSys 2018
Country/TerritoryChina
CityShenzhen
Period11/4/18 → …

ASJC Scopus subject areas

  • Fuel Technology
  • Computer Science Applications
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Feasibility of multi-tenancy on intermittent power'. Together they form a unique fingerprint.

Cite this