Feature-based registration of histopathology images with different stains: An application for computerized follicular lymphoma prognosis

Lee Alex Donald Cooper*, Olcay Sertel, Jun Kong, Gerard Lozanski, Kun Huang, Metin Gurcan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Follicular lymphoma (FL) is the second most common type of non-Hodgkin's lymphoma. Manual histological grading of FL is subject to remarkable inter- and intra-reader variations. A promising approach to grading is the development of a computer-assisted system that improves consistency and precision. Correlating information from adjacent slides with different stain types requires establishing spatial correspondences between the digitized section pair through a precise non-rigid image registration. However, the dissimilar appearances of the different stain types challenges existing registration methods. This study proposes a method for the automatic non-rigid registration of histological section images with different stain types. This method is based on matching high level features that are representative of small anatomical structures. This choice of feature provides a rich matching environment, but also results in a high mismatch probability. Matching confidence is increased by establishing local groups of coherent features through geometric reasoning. The proposed method is validated on a set of FL images representing different disease stages. Statistical analysis demonstrates that given a proper feature set the accuracy of automatic registration is comparable to manual registration.

Original languageEnglish (US)
Pages (from-to)182-192
Number of pages11
JournalComputer Methods and Programs in Biomedicine
Volume96
Issue number3
DOIs
StatePublished - Dec 1 2009

Keywords

  • Digital pathology
  • Feature extraction
  • Follicular lymphoma grading
  • Image analysis
  • Image registration

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Health Informatics

Fingerprint Dive into the research topics of 'Feature-based registration of histopathology images with different stains: An application for computerized follicular lymphoma prognosis'. Together they form a unique fingerprint.

Cite this