Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient

Zhenyi Zheng, Yue Zhang*, Victor Lopez-Dominguez, Luis Sánchez-Tejerina, Jiacheng Shi, Xueqiang Feng, Lei Chen, Zilu Wang, Zhizhong Zhang, Kun Zhang, Bin Hong, Yong Xu, Youguang Zhang, Mario Carpentieri, Albert Fert, Giovanni Finocchio*, Weisheng Zhao*, Pedram Khalili Amiri*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

75 Scopus citations

Abstract

Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii–Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.

Original languageEnglish (US)
Article number4555
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient'. Together they form a unique fingerprint.

Cite this