TY - JOUR
T1 - Finite Element Model for Coupled Diffusion and Elastoplastic Deformation during High-Temperature Oxidation of Fe to FeO
AU - Wilke, Stephen K.
AU - Dunand, David C.
N1 - Publisher Copyright:
© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
PY - 2020/1/5
Y1 - 2020/1/5
N2 - Solid-oxide iron-air batteries are an emerging technology for large-scale energy storage, but mechanical degradation of Fe-based storage materials limits battery lifetime. Experimental studies have revealed cycling degradation due to large volume changes during oxidation/reduction (via H2O/H2 at 800 °C), but degradation has not yet been correlated with the microstructural stress and strain evolution. Here, we implement a finite element model for oxidation of a Fe lamella to FeO (74% volumetric expansion), in a lamellar Fe foam designed for battery applications. Growth of FeO at the Fe/gas interface is coupled, via an oxidation reaction and solid-state diffusion, with the shrinkage rate of the Fe lamellar core. Using isotropic linear elasticity and plastic hardening, the model simulates deformation of a continuously growing FeO layer by dynamically switching "gas" elements into new "FeO" elements along a sharp FeO/gas interface. As oxidation progresses, the effective plastic strain and von Mises stress increase in FeO. Distribution of tensile and compressive stresses along the Fe/FeO interface are validated by oxidation theory and explain interface delamination, as observed during in operando X-ray tomography experiments. The model explains the superior stability of lamellar vs dendritic foam architectures and the improved redox lifetime of Fe-Ni foams.
AB - Solid-oxide iron-air batteries are an emerging technology for large-scale energy storage, but mechanical degradation of Fe-based storage materials limits battery lifetime. Experimental studies have revealed cycling degradation due to large volume changes during oxidation/reduction (via H2O/H2 at 800 °C), but degradation has not yet been correlated with the microstructural stress and strain evolution. Here, we implement a finite element model for oxidation of a Fe lamella to FeO (74% volumetric expansion), in a lamellar Fe foam designed for battery applications. Growth of FeO at the Fe/gas interface is coupled, via an oxidation reaction and solid-state diffusion, with the shrinkage rate of the Fe lamellar core. Using isotropic linear elasticity and plastic hardening, the model simulates deformation of a continuously growing FeO layer by dynamically switching "gas" elements into new "FeO" elements along a sharp FeO/gas interface. As oxidation progresses, the effective plastic strain and von Mises stress increase in FeO. Distribution of tensile and compressive stresses along the Fe/FeO interface are validated by oxidation theory and explain interface delamination, as observed during in operando X-ray tomography experiments. The model explains the superior stability of lamellar vs dendritic foam architectures and the improved redox lifetime of Fe-Ni foams.
UR - http://www.scopus.com/inward/record.url?scp=85084841182&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084841182&partnerID=8YFLogxK
U2 - 10.1149/1945-7111/ab8ed4
DO - 10.1149/1945-7111/ab8ed4
M3 - Article
AN - SCOPUS:85084841182
SN - 0013-4651
VL - 167
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 8
M1 - 080532
ER -