Abstract
Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability.
Original language | English (US) |
---|---|
Pages (from-to) | 209-224 |
Number of pages | 16 |
Journal | Nuclear Engineering and Design |
Volume | 133 |
Issue number | 2 |
DOIs | |
State | Published - Mar 1992 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Nuclear Energy and Engineering
- Materials Science(all)
- Safety, Risk, Reliability and Quality
- Waste Management and Disposal
- Mechanical Engineering