First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion

Ruqian Wu*, A. J. Freeman, G. B. Olson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

308 Scopus citations

Abstract

Toward an electronic level understanding of intergranular embrittlement and its control in steels, the effects of phosphorus and boron impurities on the energy and electronic properties of both an iron grain boundary and its corresponding intergranular fracture surface are investigated by the local density full potential augmented plane wave method. When structural relaxations are taken into account, the calculated energy difference of phosphorus in the two environments is consistent with its measured embrittlement potency. In contrast to the nonhybridized interaction of iron and phosphorus, iron-boron hybridization permits covalent bonding normal to the boundary contributing to cohesion enhancement. Insights into bonding behavior offer the potential for new directions in alloy composition for improvement of grain boundary-sensitive properties.

Original languageEnglish (US)
Pages (from-to)376-380
Number of pages5
JournalScience
Volume265
Issue number5170
DOIs
StatePublished - Jul 15 1994

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion'. Together they form a unique fingerprint.

Cite this