Abstract
Introduction of economically viable hydrogen cars is hindered by the need to store large amounts of hydrogen. Metal borohydrides [LiBH 4, Mg(BH 4) 2, Ca(BH 4) 2] are attractive candidates for onboard storage because they contain high densities of hydrogen by weight and by volume. Using a set of recently developed theoretical first-principles methods, we predict currently unknown crystal structures and hydrogen storage reactions in the Li-Mg-Ca-B-H system. Hydrogen release from LiBH 4 and Mg(BH 4) 2 is predicted to proceed via intermediate Li 2B 12H 12 and MgB 12H 12 phases, while for Ca borohydride two competing reaction pathways (into CaB 6 and CaH 2, and into CaB 12H 12 and CaH 2) are found to have nearly equal free energies. We predict two new hydrogen storage reactions that are some of the most attractive among the presently known ones. They combine high gravimetric densities (8.4 and 7.7 wt % H 2) with low enthalpies [approximately 25 kJ/(mol H 2)] and are thermodynamically reversible at low pressures due to low vibrational entropies of the product phases containing the [B 12H 12] 2- anion.
Original language | English (US) |
---|---|
Pages (from-to) | 230-237 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 131 |
Issue number | 1 |
DOIs | |
State | Published - Jan 14 2009 |
ASJC Scopus subject areas
- General Chemistry
- Biochemistry
- Catalysis
- Colloid and Surface Chemistry