FLAR: A Unified Prototype Framework for Few-sample Lifelong Active Recognition

Lei Fan, Peixi Xiong, Wei Wei, Ying Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Intelligent agents with visual sensors are allowed to actively explore their observations for better recognition performance. This task is referred to as Active Recognition (AR). Currently, most methods toward AR are implemented under a fixed-category setting, which constrains their applicability in realistic scenarios that need to incrementally learn new classes without retraining from scratch. Further, collecting massive data for novel categories is expensive. To address this demand, in this paper, we propose a unified framework towards Few-sample Lifelong Active Recognition (FLAR), which aims at performing active recognition on progressively arising novel categories that only have few training samples. Three difficulties emerge with FLAR: the lifelong recognition policy learning, the knowledge preservation of old categories, and the lack of training samples. To this end, our approach integrates prototypes, a robust representation for limited training samples, into a reinforcement learning solution, which motivates the agent to move towards views resulting in more discriminative features. Catastrophic forgetting during lifelong learning is then alleviated with knowledge distillation. Extensive experiments across two datasets, respectively for object and scene recognition, demonstrate that even without large training samples, the proposed approach could learn to actively recognize novel categories in a class-incremental behavior.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages15374-15383
Number of pages10
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'FLAR: A Unified Prototype Framework for Few-sample Lifelong Active Recognition'. Together they form a unique fingerprint.

Cite this