Focal Track: Depth and Accommodation with Oscillating Lens Deformation

Qi Guo, Emma Alexander, Todd Zickler

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

The focal track sensor is a monocular and computationally efficient depth sensor that is based on defocus controlled by a liquid membrane lens. It synchronizes small lens oscillations with a photosensor to produce real-time depth maps by means of differential defocus, and it couples these oscillations with bigger lens deformations that adapt the defocus working range to track objects over large axial distances. To create the focal track sensor, we derive a texture-invariant family of equations that relate image derivatives to scene depth when a lens changes its focal length differentially. Based on these equations, we design a feed-forward sequence of computations that: robustly incorporates image derivatives at multiple scales; produces confidence maps along with depth; and can be trained endto- end to mitigate against noise, aberrations, and other non-idealities. Our prototype with 1-inch optics produces depth and confidence maps at 100 frames per second over an axial range of more than 75cm.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages966-974
Number of pages9
ISBN (Electronic)9781538610329
DOIs
StatePublished - Dec 22 2017
Externally publishedYes
Event16th IEEE International Conference on Computer Vision, ICCV 2017 - Venice, Italy
Duration: Oct 22 2017Oct 29 2017

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2017-October
ISSN (Print)1550-5499

Conference

Conference16th IEEE International Conference on Computer Vision, ICCV 2017
Country/TerritoryItaly
CityVenice
Period10/22/1710/29/17

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Focal Track: Depth and Accommodation with Oscillating Lens Deformation'. Together they form a unique fingerprint.

Cite this