Focused ion beam sample preparation of continuous fibre-reinforced ceramic composite specimens for transmission electron microscopy

S. T. Kim, Vinayak P Dravid*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The microanalysis of interfaces in fibre-reinforced composite materials is dependent on the successful preparation of specimens suitable for transmission electron microscope (TEM) inspection. Ideal samples should possess large amounts of structurally intact and uniform thin area in the fibre/matrix interface regions of the samples. Because fibre/matrix interfaces in this class of materials are often designed to fail under mechanical stress, conventionally prepared samples are prone to interfacial failure and differential thinning, both of which preclude detailed TEM microanalysis. These effects were seen in a conventionally dimpled and ion- beam-thinned specimen prepared from a continuous fibre reinforced ceramic composite composed of CaWO4-coated Nextel 610(TM) fibres in an alumina matrix. The dimpled specimen showed large amounts of interfacial failure, with only thick regions of the specimen left intact. To overcome these limitations, a focused ion beam (FIB) technique was applied to this same material. The superiority of the FIB-produced sample is evident in both the morphology and scanning transmission electron microscopy analyses of the sample.

Original languageEnglish (US)
Pages (from-to)124-133
Number of pages10
JournalJournal of Microscopy
Volume198
Issue number2
DOIs
StatePublished - Jan 1 2000

Keywords

  • FIB
  • Fibre-reinforced composite
  • STEM
  • Sample preparation
  • TEM

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Histology

Fingerprint Dive into the research topics of 'Focused ion beam sample preparation of continuous fibre-reinforced ceramic composite specimens for transmission electron microscopy'. Together they form a unique fingerprint.

Cite this