Force-dependent allostery of the α-catenin actin-binding domain controls adherens junction dynamics and functions

Noboru Ishiyama*, Ritu Sarpal, Megan N. Wood, Samantha K. Barrick, Tadateru Nishikawa, Hanako Hayashi, Anna B. Kobb, Annette S. Flozak, Alex Yemelyanov, Rodrigo Fernandez-Gonzalez, Shigenobu Yonemura, Deborah E. Leckband, Cara J. Gottardi, Ulrich Tepass, Mitsuhiko Ikura

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

64 Scopus citations


α-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which α-catenin engages F-actin under tension remained elusive. Here we show that the α1-helix of the α-catenin actin-binding domain (αcat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. αcat-ABD containing an α1-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length α-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that α1-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of αcat-ABD-H1 homodimer suggest that α-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of αcat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis.

Original languageEnglish (US)
Article number5121
JournalNature communications
Issue number1
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Force-dependent allostery of the α-catenin actin-binding domain controls adherens junction dynamics and functions'. Together they form a unique fingerprint.

Cite this