Abstract
Giant planets migrate though the protoplanetary disc as they grow their solid core and attract their gaseous envelope. Previously, we have studied the growth and migration of an isolated planet in an evolving disc. Here, we generalise such models to include the mutual gravitational interaction between a high number of growing planetary bodies. We have investigated how the formation of planetary systems depends on the radial flux of pebbles through the protoplanetary disc and on the planet migration rate. Our N-body simulations confirm previous findings that Jupiter-like planets in orbits outside the water ice line originate from embryos starting out at 20-40 AU when using nominal type-I and type-II migration rates and a pebble flux of approximately 100-200 Earth masses per million years, enough to grow Jupiter within the lifetime of the solar nebula. The planetary embryos placed up to 30 AU migrate into the inner system (rP < 1AU). There they form super-Earths or hot and warm gas giants, producing systems that are inconsistent with the configuration of the solar system, but consistent with some exoplanetary systems. We also explored slower migration rates which allow the formation of gas giants from embryos originating from the 5-10 AU region, which are stranded exterior to 1 AU at the end of the gas-disc phase. These giant planets can also form in discs with lower pebbles fluxes (50-100 Earth masses per Myr). We identify a pebble flux threshold below which migration dominates and moves the planetary core to the inner disc, where the pebble isolation mass is too low for the planet to accrete gas efficiently. In our model, giant planet growth requires a sufficiently high pebble flux to enable growth to out-compete migration. An even higher pebble flux produces systems with multiple gas giants. We show that planetary embryos starting interior to 5 AU do not grow into gas giants, even if migration is slow and the pebble flux is large. These embryos instead grow to just a few Earth masses, the mass regime of super-Earths. This stunted growth is caused by the low pebble isolation mass in the inner disc and is therefore independent of the pebble flux. Additionally, we show that the long-term evolution of our formed planetary systems can naturally produce systems with inner super-Earths and outer gas giants as well as systems of giant planets on very eccentric orbits.
Original language | English (US) |
---|---|
Article number | A88 |
Journal | Astronomy and Astrophysics |
Volume | 623 |
DOIs | |
State | Published - Mar 1 2019 |
Funding
cA knolw edgements. B.B. thanks the European Research Council (ERC Starting Grant 757448-PAMDORA) for their financial support. A.J. was supported by the European Research Council under ERC Consolidator Grant agreement 724687-PLANETESYS, the Swedish Research Council (grant 2014-5775), and the Knut and Alice Wallenberg Foundation (grants 2012.0150, 2014.0017, and 2014.0048). S.N.R. and A.M. thank the Agence Nationale pour la Recherche for support via grant ANR-13-BS05-0003-002 (grant MOJO). A. I. thank FAPESP for support via grants 16/19556-7 and 16/12686-2. We thank the referee John Chambers for his report and comments that helped to improve this article.
Keywords
- Accretion, accretion discs
- Planet-disc interactions
- Planets and satellites: formation
- Protoplanetary discs
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science