TY - JOUR
T1 - (formula presented) substitution in hydroxyapatite
T2 - Theory and experiment
AU - Jiang, Ming
AU - Terra, J.
AU - Rossi, A. M.
AU - Morales, M. A.
AU - Baggio Saitovitch, E. M.
AU - Ellis, Donald E
PY - 2002/1/1
Y1 - 2002/1/1
N2 - Electron paramagnetic resonance, Mössbauer spectroscopy, and electronic structure calculations were combined in order to study the local geometry of (formula presented) in Fe-doped hydroxyapatite. Atomistic simulations were carried out to obtain estimates of local geometry and lattice strain associated with fourfold, fivefold, and sixfold Fe sites. First-principles embedded cluster density functional calculations were performed to investigate the electronic structure associated with the substitution of calcium by (formula presented) Mössbauer isomer shift, quadrupole splitting, and the hyperfine magnetic field were calculated for each site and local coordination, for comparison to an experimental fit to a five-line model consisting of two bulk sites each for (formula presented) and (formula presented) and a surface hematitelike (formula presented) species.
AB - Electron paramagnetic resonance, Mössbauer spectroscopy, and electronic structure calculations were combined in order to study the local geometry of (formula presented) in Fe-doped hydroxyapatite. Atomistic simulations were carried out to obtain estimates of local geometry and lattice strain associated with fourfold, fivefold, and sixfold Fe sites. First-principles embedded cluster density functional calculations were performed to investigate the electronic structure associated with the substitution of calcium by (formula presented) Mössbauer isomer shift, quadrupole splitting, and the hyperfine magnetic field were calculated for each site and local coordination, for comparison to an experimental fit to a five-line model consisting of two bulk sites each for (formula presented) and (formula presented) and a surface hematitelike (formula presented) species.
UR - http://www.scopus.com/inward/record.url?scp=85038324146&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038324146&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.66.224107
DO - 10.1103/PhysRevB.66.224107
M3 - Article
AN - SCOPUS:85038324146
VL - 66
SP - 1
EP - 15
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 1098-0121
IS - 22
ER -