## Abstract

In simulating charged systems, it is often useful to treat some ionic components of the system at the mean-field level and solve the Poisson-Boltzmann (PB) equation to get their respective density profiles. The numerically intensive task of solving the PB equation at each step of the simulation can be bypassed using variational methods that treat the electrostatic potential as a dynamic variable. But such approaches require the access to a true free-energy functional: a functional that not only provides the correct solution of the PB equation upon extremization, but also evaluates to the true free energy of the system at its minimum. Moreover, the numerical efficiency of such procedures is further enhanced if the free-energy functional is local and is expressed in terms of the electrostatic potential. Existing PB functionals of the electrostatic potential, while possessing the local structure, are not free-energy functionals. We present a variational formulation with a local free-energy functional of the potential. In addition, we also construct a nonlocal free-energy functional of the electrostatic potential. These functionals are suited for employment in simulation schemes based on the ideas of dynamical optimization.

Original language | English (US) |
---|---|

Article number | 022305 |

Journal | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics |

Volume | 88 |

Issue number | 2 |

DOIs | |

State | Published - Aug 12 2013 |

## ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics