Abstract
We propose a multichannel optical microwave system employing a frequency up-converting optoelectronic oscillator (FU-OEO) [FU-OEO: frequency up-converting optoelectronic oscillator] as a low-phase noise local oscillator (LO) and a multichannel frequency up-converter. Employing the FU-OEO, we demonstrated an optical microwave system capable of 16 optical microwave links in the C-band on a WDM network; the generated optical microwaves were distributed to their designated remote stations according to the channel wavelength. When the FU-OEO was used as the system LO, the phase noise of the optical microwaves was under -80 dBc/Hz at a 10 kHz offset from a 20 GHz carrier frequency. As a frequency up-converter, the FU-OEO simultaneously up-converted all optical data channels at a 1.25 Gbps data rate for optical microwaves in the 20 GHz band of an optical carrier suppression mode having almost 100% modulation depth. The overall system performance was verified by measuring the bit error rates (BER) of the data recovered from optical microwaves received through single-mode fibers. The measured BER indicated that the system can transmit over 50 km with a power penalty of less than 1 dB. This method can be useful for high-frequency applications where the generation and transmission of optical microwaves are greatly restricted by optical or electrical bandwidths.
Original language | English (US) |
---|---|
Pages (from-to) | 242-246 |
Number of pages | 5 |
Journal | Optical Fiber Technology |
Volume | 18 |
Issue number | 4 |
DOIs | |
State | Published - Jul 2012 |
Keywords
- All-optical frequency up-conversion
- Optical carrier suppression modulation
- Optical microwaves
- Optical millimeter generation
- Optoelectronic oscillator
- Wavelength division multiplexing
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Control and Systems Engineering
- Atomic and Molecular Physics, and Optics
- Instrumentation
- Electrical and Electronic Engineering