Fully automatic 3D reconstruction of histological images

Ulaş Baǧci*, Li Bai

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

In this paper, we propose a computational framework for 3D volume reconstruction from 2D histological slices using registration algorithms in feature space. To improve the quality of reconstructed 3D volume, first, intensity variations in images are corrected by an intensity standardization process which maps image intensity scale to a standard scale where similar intensities correspond to similar tissues. Second, a subvolume approach is proposed for 3D reconstruction by dividing standardized slices into groups. Third, in order to improve the quality of the reconstruction process, an automatic best reference slice selection algorithm is developed based on an iterative assessment of image entropy and mean square error of the registration process. Finally, we demonstrate that the choice of the reference slice has a significant impact on registration quality and subsequent 3D reconstruction.

Original languageEnglish (US)
Title of host publication2008 5th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, Proceedings, ISBI
Pages991-994
Number of pages4
DOIs
StatePublished - 2008
Externally publishedYes
Event2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI - Paris, France
Duration: May 14 2008May 17 2008

Publication series

Name2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Proceedings, ISBI

Conference

Conference2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI
Country/TerritoryFrance
CityParis
Period5/14/085/17/08

Keywords

  • Edgeness
  • Elastic registration
  • Entropy
  • Histology
  • Image reconstruction

ASJC Scopus subject areas

  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Fully automatic 3D reconstruction of histological images'. Together they form a unique fingerprint.

Cite this