TY - JOUR
T1 - GaInAs and GaInAsP materials grown by low pressure MOCVD for microwave and optoelectronic applications
AU - Duchemin, J. P.
AU - Hirtz, J. P.
AU - Razeghi, M.
AU - Bonnet, M.
AU - Hersee, S. D.
PY - 1981/1/1
Y1 - 1981/1/1
N2 - The low pressure MOCVD technique has been successfully used to grow GaInAsP, lattice-matched to InP, for the complete compositional range between InP (λ=0.91 μm) and the ternary compound Ga0.47In0.53As (λ=1.67 μm). By contrast to LPE growth it has been found that during the MOCVD growth of double heterostructures InP can be grown directly onto the ternary or quaternary with no disturbance of the active layer, i.e. there is no effect equivalent to "melt back". The compositional grading on both sides of the active layer was measured by scanning Auger spectroscopy on bevelled samples. It was found that the graded regions were typically less than 100 Å wide for GaInAsP active layers and less than 50 Å wide for GaInAs active layers. Single layers of undoped GaInAs exhibited a typical mobility of 6700 cm2 V-1s-1 at 1.5×1017 cm-3. The compositional uniformity of the ternary layers was characterised by measurement of the photoluminescence wavelength at various points on a large sample. The wavelength varied by <3 nm over 95% of the area, which was approximately 8 cm2. Our early MOCVD grown GaInAsP/InP DH lasers exhibited high thresholds due to a poor interface between the p-InP and the active layer. However, recently fabricated broad area lasers emitting at 1.27 μm show an average threshold current density of 1.5 kA cm-2 with a T0 of between 70 to 80 K. Stripe geometry lasers have being fabricated from this material and CW operation has been obtained.
AB - The low pressure MOCVD technique has been successfully used to grow GaInAsP, lattice-matched to InP, for the complete compositional range between InP (λ=0.91 μm) and the ternary compound Ga0.47In0.53As (λ=1.67 μm). By contrast to LPE growth it has been found that during the MOCVD growth of double heterostructures InP can be grown directly onto the ternary or quaternary with no disturbance of the active layer, i.e. there is no effect equivalent to "melt back". The compositional grading on both sides of the active layer was measured by scanning Auger spectroscopy on bevelled samples. It was found that the graded regions were typically less than 100 Å wide for GaInAsP active layers and less than 50 Å wide for GaInAs active layers. Single layers of undoped GaInAs exhibited a typical mobility of 6700 cm2 V-1s-1 at 1.5×1017 cm-3. The compositional uniformity of the ternary layers was characterised by measurement of the photoluminescence wavelength at various points on a large sample. The wavelength varied by <3 nm over 95% of the area, which was approximately 8 cm2. Our early MOCVD grown GaInAsP/InP DH lasers exhibited high thresholds due to a poor interface between the p-InP and the active layer. However, recently fabricated broad area lasers emitting at 1.27 μm show an average threshold current density of 1.5 kA cm-2 with a T0 of between 70 to 80 K. Stripe geometry lasers have being fabricated from this material and CW operation has been obtained.
UR - http://www.scopus.com/inward/record.url?scp=0042121655&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042121655&partnerID=8YFLogxK
U2 - 10.1016/0022-0248(81)90272-4
DO - 10.1016/0022-0248(81)90272-4
M3 - Article
AN - SCOPUS:0042121655
SN - 0022-0248
VL - 55
SP - 64
EP - 73
JO - Journal of Crystal Growth
JF - Journal of Crystal Growth
IS - 1
ER -