Gait variability following abrupt removal of external stabilization decreases with practice in incomplete spinal cord injury but increases in non-impaired individuals

Mengnan Mary Wu*, Geoffrey L. Brown, Kwang-Youn A Kim, Janis Kim, Keith Edward Gordon

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

Background: Individuals with incomplete spinal cord injury (iSCI) exhibit considerable lateral center of mass (COM) movement variability during gait transitions from a stabilizing to unassisted environment, while non-impaired individuals do not. To understand how iSCI influences gait adaption, we examined persons with and without iSCI performing repeated locomotor transitions. We hypothesized that, with practice, individuals with iSCI would prioritize COM control performance during the transition as exhibited by a reduction in kinematic variability. In, contrast, we hypothesized that non-impaired individuals would prioritize control effort by decreasing muscular activity. Methods: Thirteen participants with iSCI and 12 non-impaired participants performed five treadmill-walking trials. During some trials, a cable-robot applied stabilizing lateral forces to the pelvis proportional in magnitude and opposite in direction to real-time lateral COM velocity. Each trial consisted of 300 continuous steps with or without a transition. During the first and last trials, no forces were applied and no transitions occurred (Null trials). During trials 2-4 (transition trials), the first 200 steps occurred in the stabilizing force field, forces were then abruptly removed, and 100 more unassisted steps were performed. We analyzed COM and step width variability, and hip abductor muscle activity during transitions (force removal until gait returned to steady state). Results: Participants with iSCI displayed large COM movement variability during the first transition but reduced variability with practice. During the first transition, lateral COM speed, lateral COM excursion, and step width were all more variable than during the first Null trial (p < 0.05). By the third transition, no metric was different from Null trials (p > 0.05). In contrast, non-impaired participants' movement variability during the first transition was not different from Null trials (p > 0.05). With practice, movement variability increased: lateral COM excursion was more variable during Transitions 2 and 3 versus the first Null trial (p < 0.05). Non-impaired participants decreased hip abductor activity from Transition 1 to 3 (p < 0.05). Conclusions: Individuals with iSCI demonstrated rapid motor savings. By the third transition, individuals with iSCI reduced locomotor variability to baseline levels. In contrast, non-impaired participants prioritized control effort over control performance. With practice transitioning, non-impaired participants increased locomotor variability and decreased muscular effort.

Original languageEnglish (US)
Article number4
JournalJournal of neuroengineering and rehabilitation
Volume16
Issue number1
DOIs
StatePublished - Jan 7 2019

Fingerprint

Spinal Cord Injuries
Gait
Hip
Pelvis
Biomechanical Phenomena
Walking
Muscles

Keywords

  • Aftereffect
  • Gait
  • Locomotion
  • Motor adaptation
  • Savings
  • Slacking
  • Spinal cord injury

ASJC Scopus subject areas

  • Rehabilitation
  • Health Informatics

Cite this

@article{107c2ca43a304ba0b70ded95b5d8caa9,
title = "Gait variability following abrupt removal of external stabilization decreases with practice in incomplete spinal cord injury but increases in non-impaired individuals",
abstract = "Background: Individuals with incomplete spinal cord injury (iSCI) exhibit considerable lateral center of mass (COM) movement variability during gait transitions from a stabilizing to unassisted environment, while non-impaired individuals do not. To understand how iSCI influences gait adaption, we examined persons with and without iSCI performing repeated locomotor transitions. We hypothesized that, with practice, individuals with iSCI would prioritize COM control performance during the transition as exhibited by a reduction in kinematic variability. In, contrast, we hypothesized that non-impaired individuals would prioritize control effort by decreasing muscular activity. Methods: Thirteen participants with iSCI and 12 non-impaired participants performed five treadmill-walking trials. During some trials, a cable-robot applied stabilizing lateral forces to the pelvis proportional in magnitude and opposite in direction to real-time lateral COM velocity. Each trial consisted of 300 continuous steps with or without a transition. During the first and last trials, no forces were applied and no transitions occurred (Null trials). During trials 2-4 (transition trials), the first 200 steps occurred in the stabilizing force field, forces were then abruptly removed, and 100 more unassisted steps were performed. We analyzed COM and step width variability, and hip abductor muscle activity during transitions (force removal until gait returned to steady state). Results: Participants with iSCI displayed large COM movement variability during the first transition but reduced variability with practice. During the first transition, lateral COM speed, lateral COM excursion, and step width were all more variable than during the first Null trial (p < 0.05). By the third transition, no metric was different from Null trials (p > 0.05). In contrast, non-impaired participants' movement variability during the first transition was not different from Null trials (p > 0.05). With practice, movement variability increased: lateral COM excursion was more variable during Transitions 2 and 3 versus the first Null trial (p < 0.05). Non-impaired participants decreased hip abductor activity from Transition 1 to 3 (p < 0.05). Conclusions: Individuals with iSCI demonstrated rapid motor savings. By the third transition, individuals with iSCI reduced locomotor variability to baseline levels. In contrast, non-impaired participants prioritized control effort over control performance. With practice transitioning, non-impaired participants increased locomotor variability and decreased muscular effort.",
keywords = "Aftereffect, Gait, Locomotion, Motor adaptation, Savings, Slacking, Spinal cord injury",
author = "Wu, {Mengnan Mary} and Brown, {Geoffrey L.} and Kim, {Kwang-Youn A} and Janis Kim and Gordon, {Keith Edward}",
year = "2019",
month = "1",
day = "7",
doi = "10.1186/s12984-018-0475-7",
language = "English (US)",
volume = "16",
journal = "Journal of NeuroEngineering and Rehabilitation",
issn = "1743-0003",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Gait variability following abrupt removal of external stabilization decreases with practice in incomplete spinal cord injury but increases in non-impaired individuals

AU - Wu, Mengnan Mary

AU - Brown, Geoffrey L.

AU - Kim, Kwang-Youn A

AU - Kim, Janis

AU - Gordon, Keith Edward

PY - 2019/1/7

Y1 - 2019/1/7

N2 - Background: Individuals with incomplete spinal cord injury (iSCI) exhibit considerable lateral center of mass (COM) movement variability during gait transitions from a stabilizing to unassisted environment, while non-impaired individuals do not. To understand how iSCI influences gait adaption, we examined persons with and without iSCI performing repeated locomotor transitions. We hypothesized that, with practice, individuals with iSCI would prioritize COM control performance during the transition as exhibited by a reduction in kinematic variability. In, contrast, we hypothesized that non-impaired individuals would prioritize control effort by decreasing muscular activity. Methods: Thirteen participants with iSCI and 12 non-impaired participants performed five treadmill-walking trials. During some trials, a cable-robot applied stabilizing lateral forces to the pelvis proportional in magnitude and opposite in direction to real-time lateral COM velocity. Each trial consisted of 300 continuous steps with or without a transition. During the first and last trials, no forces were applied and no transitions occurred (Null trials). During trials 2-4 (transition trials), the first 200 steps occurred in the stabilizing force field, forces were then abruptly removed, and 100 more unassisted steps were performed. We analyzed COM and step width variability, and hip abductor muscle activity during transitions (force removal until gait returned to steady state). Results: Participants with iSCI displayed large COM movement variability during the first transition but reduced variability with practice. During the first transition, lateral COM speed, lateral COM excursion, and step width were all more variable than during the first Null trial (p < 0.05). By the third transition, no metric was different from Null trials (p > 0.05). In contrast, non-impaired participants' movement variability during the first transition was not different from Null trials (p > 0.05). With practice, movement variability increased: lateral COM excursion was more variable during Transitions 2 and 3 versus the first Null trial (p < 0.05). Non-impaired participants decreased hip abductor activity from Transition 1 to 3 (p < 0.05). Conclusions: Individuals with iSCI demonstrated rapid motor savings. By the third transition, individuals with iSCI reduced locomotor variability to baseline levels. In contrast, non-impaired participants prioritized control effort over control performance. With practice transitioning, non-impaired participants increased locomotor variability and decreased muscular effort.

AB - Background: Individuals with incomplete spinal cord injury (iSCI) exhibit considerable lateral center of mass (COM) movement variability during gait transitions from a stabilizing to unassisted environment, while non-impaired individuals do not. To understand how iSCI influences gait adaption, we examined persons with and without iSCI performing repeated locomotor transitions. We hypothesized that, with practice, individuals with iSCI would prioritize COM control performance during the transition as exhibited by a reduction in kinematic variability. In, contrast, we hypothesized that non-impaired individuals would prioritize control effort by decreasing muscular activity. Methods: Thirteen participants with iSCI and 12 non-impaired participants performed five treadmill-walking trials. During some trials, a cable-robot applied stabilizing lateral forces to the pelvis proportional in magnitude and opposite in direction to real-time lateral COM velocity. Each trial consisted of 300 continuous steps with or without a transition. During the first and last trials, no forces were applied and no transitions occurred (Null trials). During trials 2-4 (transition trials), the first 200 steps occurred in the stabilizing force field, forces were then abruptly removed, and 100 more unassisted steps were performed. We analyzed COM and step width variability, and hip abductor muscle activity during transitions (force removal until gait returned to steady state). Results: Participants with iSCI displayed large COM movement variability during the first transition but reduced variability with practice. During the first transition, lateral COM speed, lateral COM excursion, and step width were all more variable than during the first Null trial (p < 0.05). By the third transition, no metric was different from Null trials (p > 0.05). In contrast, non-impaired participants' movement variability during the first transition was not different from Null trials (p > 0.05). With practice, movement variability increased: lateral COM excursion was more variable during Transitions 2 and 3 versus the first Null trial (p < 0.05). Non-impaired participants decreased hip abductor activity from Transition 1 to 3 (p < 0.05). Conclusions: Individuals with iSCI demonstrated rapid motor savings. By the third transition, individuals with iSCI reduced locomotor variability to baseline levels. In contrast, non-impaired participants prioritized control effort over control performance. With practice transitioning, non-impaired participants increased locomotor variability and decreased muscular effort.

KW - Aftereffect

KW - Gait

KW - Locomotion

KW - Motor adaptation

KW - Savings

KW - Slacking

KW - Spinal cord injury

UR - http://www.scopus.com/inward/record.url?scp=85059497797&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059497797&partnerID=8YFLogxK

U2 - 10.1186/s12984-018-0475-7

DO - 10.1186/s12984-018-0475-7

M3 - Article

VL - 16

JO - Journal of NeuroEngineering and Rehabilitation

JF - Journal of NeuroEngineering and Rehabilitation

SN - 1743-0003

IS - 1

M1 - 4

ER -