Gamma-ray burst optical light-curve zoo: Comparison with X-ray observations

E. Zaninoni, M. G. Bernardini, R. Margutti, S. Oates, G. Chincarini

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Aims. We present a comprehensive analysis of the optical and X-ray light curves (LCs) and spectral energy distributions (SEDs) of a large sample of gamma-ray burst (GRB) afterglows to investigate the relationship between the optical and X-ray emission after the prompt phase. We consider all data available in the literature, which where obtained with different instruments. Methods. We collected the optical data from the literature and determined the shapes of the optical LCs. Then, using previously presented X-ray data, we modeled the optical/X-ray SEDs. We studied the SED parameter distributions and compared the optical and X-ray LC slopes and shapes. Results. The optical and X-ray spectra become softer as a function of time while the gas-to-dust ratios of GRBs are higher than the values calculated for the Milky Way and the Large and Small Magellanic Clouds. For 20% of the GRBs the difference between the optical and X-ray slopes is consistent with 0 or 1/4 within the uncertainties (we did it not consider the steep decay phase), while in the remaining 80% the optical and X-ray afterglows show significantly different temporal behaviors. Interestingly, we find an indication that the onset of the forward shock in the optical LCs (initial peaks or shallow phases) could be linked to the presence of the X-ray flares. Indeed, when X-ray flares are present during the steep decay, the optical LC initial peak or end plateau occurs during the steep decay; if instead the X-ray flares are absent or occur during the plateau, the optical initial peak or end plateau takes place during the X-ray plateau. Conclusions. The forward-shock model cannot explain all features of the optical (e.g. bumps, late re-brightenings) and X-ray (e.g. flares) LCs. However, the synchrotron model is a viable mechanism for GRBs at late times. In particular, we found a relationship between the presence of the X-ray flares and the shape of the optical LC that indicates a link between the prompt emission and the optical afterglow.

Original languageEnglish (US)
Article numberA12
JournalAstronomy and Astrophysics
Volume557
DOIs
StatePublished - 2013

Funding

We thank the anonymous referee for the helpful comments that have improved this paper. E.Z. thanks Daniele Malesani for the useful discussions, suggestions and support during the preparation of the paper; Paolo D’Avanzo and Andrea Melandri for the useful advices; Thomas Krüler for sharing the data of GRB 070802 and Fang Yuang for the data of GRB 081008; Craig B. Markwardt for the help with the MPFIT routine. This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. This work was supported by ASI grant Swift I/011/07/0 and in part by I/004/11/0, by Ministero degli Affari Esteri and the University of Milano – Bicocca.

Keywords

  • Gamma-ray burst: general
  • Radiation mechanisms: non-thermal

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Gamma-ray burst optical light-curve zoo: Comparison with X-ray observations'. Together they form a unique fingerprint.

Cite this