TY - JOUR
T1 - Gatekeeping versus promiscuity in the early stages of the andrimid biosynthetic assembly line
AU - Magarvey, Nathan A.
AU - Fortin, Pascal D.
AU - Thomas, Paul M.
AU - Kelleher, Neil L.
AU - Walsh, Christopher T.
PY - 2008/9/19
Y1 - 2008/9/19
N2 - The antibiotic andrimid, a nanomolar inhibitor of bacterial acetyl coenzyme A carboxylase, is generated on an unusual polyketide/nonribosomal peptide enzyme assembly line in that all thiolation (T) domains/small-molecule building stations are on separate proteins. In addition, a transglutaminase homologue is used to condense andrimid building blocks together on the andrimid assembly line. The first two modules of the andrimid assembly line yields an octatrienoyl-β-Phe-thioester tethered to the AdmI T domain, with amide bond formation carried out by a free-standing transglutaminase homologue AdmF. Analysis of the aminomutase AdmH reveals its specific conversion from L-Phe to (S)-β-Phe, which in turn is activated by AdmJ and ATP to form (S)-β-Phe-aminoacyl-AMP. AdmJ then transfers the (S)-β-Phe moiety to one of the free-standing T domains, AdmI, but not AdmA, which instead gets loaded with an octatrienoyl group by other enzymes. AdmF, the amide synthase, will accept a variety of acyl groups in place of the octatrienoyl donor if presented on either AdmA or AdmI. AdmF will also use either stereoisomer of phenylalanine or β-Phe when presented on AdmA and AdmI, but not when placed on noncognate T domains. Further, we show the polyketide synthase proteins responsible for the polyunsaturated acyl cap can be bypassed in vitro with N-acetylcysteamine as a low-molecular-weight acyl donor to AdmF and also in vivo in an Escherichia coli strain bearing the andrimid biosynthetic gene cluster with a knockout in admA.
AB - The antibiotic andrimid, a nanomolar inhibitor of bacterial acetyl coenzyme A carboxylase, is generated on an unusual polyketide/nonribosomal peptide enzyme assembly line in that all thiolation (T) domains/small-molecule building stations are on separate proteins. In addition, a transglutaminase homologue is used to condense andrimid building blocks together on the andrimid assembly line. The first two modules of the andrimid assembly line yields an octatrienoyl-β-Phe-thioester tethered to the AdmI T domain, with amide bond formation carried out by a free-standing transglutaminase homologue AdmF. Analysis of the aminomutase AdmH reveals its specific conversion from L-Phe to (S)-β-Phe, which in turn is activated by AdmJ and ATP to form (S)-β-Phe-aminoacyl-AMP. AdmJ then transfers the (S)-β-Phe moiety to one of the free-standing T domains, AdmI, but not AdmA, which instead gets loaded with an octatrienoyl group by other enzymes. AdmF, the amide synthase, will accept a variety of acyl groups in place of the octatrienoyl donor if presented on either AdmA or AdmI. AdmF will also use either stereoisomer of phenylalanine or β-Phe when presented on AdmA and AdmI, but not when placed on noncognate T domains. Further, we show the polyketide synthase proteins responsible for the polyunsaturated acyl cap can be bypassed in vitro with N-acetylcysteamine as a low-molecular-weight acyl donor to AdmF and also in vivo in an Escherichia coli strain bearing the andrimid biosynthetic gene cluster with a knockout in admA.
UR - http://www.scopus.com/inward/record.url?scp=53449094346&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=53449094346&partnerID=8YFLogxK
U2 - 10.1021/cb800085g
DO - 10.1021/cb800085g
M3 - Article
C2 - 18652473
AN - SCOPUS:53449094346
SN - 1554-8929
VL - 3
SP - 542
EP - 554
JO - ACS chemical biology
JF - ACS chemical biology
IS - 9
ER -