TY - GEN
T1 - Generation of surfaces with isotropic and anisotropic wetting properties by curved water jet guided laser micro-machining
AU - Shi, Yi
AU - Cao, Jian
AU - Ehmann, Kornel F.
N1 - Funding Information:
The authors would like to thank Professor Q. Jane Wang’s tribology lab for providing the contact angle measurement system. This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. This research was funded by the National Science Foundation (Award CMMI #1234491).
Publisher Copyright:
Copyright © 2020 ASME
PY - 2020
Y1 - 2020
N2 - This experimental work utilizes a newly developed method, curved water jet guided laser micro-machining, to generate micro features on metallic surfaces. During the process, material is removed by a high-power nanosecond laser beam which is transmitted through a high-pressure micro water jet via total internal reflection. To achieve intricate texturing patterns, a secondary motion component is superimposed on the XY motion of the workpiece provided by the motion stage. The secondary motion is generated by deflecting the water jet trajectory by a controllable dielectrophoretic force. The induced secondary motion of the water jet cuts the processing time to one half when generating texture patterns for isotropic wetting as compared to processes with only XY motion. The ability to alter the water jet's trajectory by tens of microns at high frequencies, which is beyond the capability of conventional CNC machines, allows a wide range of different micro patterns to be generated, profoundly increasing the flexibility and efficiency of the process as compared to conventional approaches. As a demonstration, surface textures for isotropic and anisotropic behaviors are generated on stainless steel surfaces. The influence of feature spacing, motion speed (frequency) and texturing patterns on surface wettability are studied.
AB - This experimental work utilizes a newly developed method, curved water jet guided laser micro-machining, to generate micro features on metallic surfaces. During the process, material is removed by a high-power nanosecond laser beam which is transmitted through a high-pressure micro water jet via total internal reflection. To achieve intricate texturing patterns, a secondary motion component is superimposed on the XY motion of the workpiece provided by the motion stage. The secondary motion is generated by deflecting the water jet trajectory by a controllable dielectrophoretic force. The induced secondary motion of the water jet cuts the processing time to one half when generating texture patterns for isotropic wetting as compared to processes with only XY motion. The ability to alter the water jet's trajectory by tens of microns at high frequencies, which is beyond the capability of conventional CNC machines, allows a wide range of different micro patterns to be generated, profoundly increasing the flexibility and efficiency of the process as compared to conventional approaches. As a demonstration, surface textures for isotropic and anisotropic behaviors are generated on stainless steel surfaces. The influence of feature spacing, motion speed (frequency) and texturing patterns on surface wettability are studied.
KW - Dielectrophoresis
KW - Surface texturing
KW - Water jet guided laser processing
KW - Wetting
UR - http://www.scopus.com/inward/record.url?scp=85101435556&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101435556&partnerID=8YFLogxK
U2 - 10.1115/MSEC2020-8230
DO - 10.1115/MSEC2020-8230
M3 - Conference contribution
AN - SCOPUS:85101435556
T3 - ASME 2020 15th International Manufacturing Science and Engineering Conference, MSEC 2020
BT - Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability
PB - American Society of Mechanical Engineers
T2 - ASME 2020 15th International Manufacturing Science and Engineering Conference, MSEC 2020
Y2 - 3 September 2020
ER -