TY - JOUR
T1 - Genetic profiling for risk reduction in human cardiovascular disease
AU - Puckelwartz, Megan J.
AU - McNally, Elizabeth M.
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014/3
Y1 - 2014/3
N2 - Cardiovascular disease is a major health concern affecting over 80,000,000 people in the U.S. alone. Heart failure, cardiomyopathy, heart rhythm disorders, atherosclerosis and aneurysm formation have significant heritable contribution. Supported by familial aggregation and twin studies, these cardiovascular diseases are influenced by genetic variation. Family-based linkage studies and population-based genome-wide association studies (GWAS) have each identified genes and variants important for the pathogenesis of cardiovascular disease. The advent of next generation sequencing has ushered in a new era in the genetic diagnosis of cardiovascular disease, and this is especially evident when considering cardiomyopathy, a leading cause of heart failure. Cardiomyopathy is a genetically heterogeneous disorder characterized by morphologically abnormal heart with abnormal function. Genetic testing for cardiomyopathy employs gene panels, and these panels assess more than 50 genes simultaneously. Despite the large size of these panels, the sensitivity for detecting the primary genetic defect is still only approximately 50%. Recently, there has been a shift towards applying broader exome and/or genome sequencing to interrogate more of the genome to provide a genetic diagnosis for cardiomyopathy. Genetic mutations in cardiomyopathy offer the capacity to predict clinical outcome, including arrhythmia risk, and genetic diagnosis often provides an early window in which to institute therapy. This discussion is an overview as to how genomic data is shaping the current understanding and treatment of cardiovascular disease.
AB - Cardiovascular disease is a major health concern affecting over 80,000,000 people in the U.S. alone. Heart failure, cardiomyopathy, heart rhythm disorders, atherosclerosis and aneurysm formation have significant heritable contribution. Supported by familial aggregation and twin studies, these cardiovascular diseases are influenced by genetic variation. Family-based linkage studies and population-based genome-wide association studies (GWAS) have each identified genes and variants important for the pathogenesis of cardiovascular disease. The advent of next generation sequencing has ushered in a new era in the genetic diagnosis of cardiovascular disease, and this is especially evident when considering cardiomyopathy, a leading cause of heart failure. Cardiomyopathy is a genetically heterogeneous disorder characterized by morphologically abnormal heart with abnormal function. Genetic testing for cardiomyopathy employs gene panels, and these panels assess more than 50 genes simultaneously. Despite the large size of these panels, the sensitivity for detecting the primary genetic defect is still only approximately 50%. Recently, there has been a shift towards applying broader exome and/or genome sequencing to interrogate more of the genome to provide a genetic diagnosis for cardiomyopathy. Genetic mutations in cardiomyopathy offer the capacity to predict clinical outcome, including arrhythmia risk, and genetic diagnosis often provides an early window in which to institute therapy. This discussion is an overview as to how genomic data is shaping the current understanding and treatment of cardiovascular disease.
KW - Cardiovascular disease
KW - Genetic profiling
KW - Next generation sequencing
KW - Whole genome sequencing
UR - http://www.scopus.com/inward/record.url?scp=84897547365&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897547365&partnerID=8YFLogxK
U2 - 10.3390/genes5010214
DO - 10.3390/genes5010214
M3 - Review article
C2 - 24705294
AN - SCOPUS:84897547365
VL - 5
SP - 214
EP - 234
JO - Genes
JF - Genes
SN - 2073-4425
IS - 1
ER -