Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer

Emma Yue Zhang, Massimo Cristofanilli, Fredika Robertson, James M. Reuben, Zhaomei Mu, Ronald C. Beavis, Hogune Im, Michael Snyder, Matan Hofree, Trey Ideker, Gilbert S. Omenn, Susan Fanayan, Seul Ki Jeong, Young Ki Paik, Anna Fan Zhang, Shiaw Lin Wu, William S. Hancock*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

In this study we selected three breast cancer cell lines (SKBR3, SUM149 and SUM190) with different oncogene expression levels involved in ERBB2 and EGFR signaling pathways as a model system for the evaluation of selective integration of subsets of transcriptomic and proteomic data. We assessed the oncogene status with reads per kilobase per million mapped reads (RPKM) values for ERBB2 (14.4, 400, and 300 for SUM149, SUM190, and SKBR3, respectively) and for EGFR (60.1, not detected, and 1.4 for the same 3 cell lines). We then used RNA-Seq data to identify those oncogenes with significant transcript levels in these cell lines (total 31) and interrogated the corresponding proteomics data sets for proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed a significant range, e.g., 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions in a given data set vs total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes, ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used bioinformatics sites GeneGo, PathwayCommons and NCI receptor signaling networks to identify pathways that contained the four main oncogenes and had good coverage in the transcriptomic and proteomic data sets as well as a significant number of oncogene interactors. The four pathways identified were ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic signatures for the SUM149 and 190 cell lines, growth factor receptor-bound protein 7 (GRB7), Crk-like protein (CRKL) and Catenin delta-1 (CTNND1) for ERBB signaling; caveolin 1 (CAV1), plectin (PLEC) for EGFR signaling; filamin A (FLNA) and actinin alpha1 (ACTN1) (associated with high levels of EGFR transcript) for integrin signalings; branched chain amino-acid transaminase 1 (BCAT1), carbamoyl-phosphate synthetase (CAD), nucleolin (NCL) (high levels of EGFR transcript); transferrin receptor (TFRC), metadherin (MTDH) (high levels of ERBB2 transcript) for MYC signaling; S100-A2 protein (S100A2), caveolin 1 (CAV1), Serpin B5 (SERPINB5), stratifin (SFN), PYD and CARD domain containing (PYCARD), and EPH receptor A2 (EPHA2) for PI3K signaling, p53 subpathway. Future studies of inflammatory breast cancer (IBC), from which the cell lines were derived, will be used to explore the significance of these observations.

Original languageEnglish (US)
Pages (from-to)2805-2817
Number of pages13
JournalJournal of Proteome Research
Volume12
Issue number6
DOIs
StatePublished - Jun 7 2013

Keywords

  • Chromosome-centric Human Proteome Project
  • EGFR
  • ERBB2
  • Inflammatory breast cancer

ASJC Scopus subject areas

  • General Chemistry
  • Biochemistry

Fingerprint

Dive into the research topics of 'Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer'. Together they form a unique fingerprint.

Cite this