Genome-wide suppressor screen identifies USP35/USP38 as therapeutic candidates for ciliopathies

I. Chun Tsai, Kevin A. Adams, Joyce A. Tzeng, Omar Shennib, Perciliz L. Tan, Nicholas Katsanis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The ciliopathies are a group of phenotypically overlapping disorders caused by structural or functional defects in the primary cilium. Although disruption of numerous signaling pathways and cellular trafficking events have been implicated in ciliary pathology, treatment options for affected individuals remain limited. Here, we performed a genome-wide RNAi (RNA interference) screen to identify genetic suppressors of BBS4, one of the genes mutated in Bardet-Biedl syndrome (BBS). We discovered 10 genes that, when silenced, ameliorate BBS4-dependent pathology. One of these encodes USP35, a negative regulator of the ubiquitin proteasome system, suggesting that inhibition of a deubiquitinase, and subsequent facilitation of the clearance of signaling components, might ameliorate BBS-relevant phenotypes. Testing of this hypothesis in transient and stable zebrafish genetic models showed this posit to be true; suppression or ablation of usp35 ameliorated hallmark ciliopathy defects including impaired convergent extension (CE), renal tubule convolution, and retinal degeneration with concomitant clearance of effectors such as β-catenin and rhodopsin. Together, our findings reinforce a direct link between proteasome-dependent degradation and ciliopathies and suggest that augmentation of this system might offer a rational path to novel therapeutic modalities.

Original languageEnglish (US)
Article numbere130516
JournalJCI Insight
Issue number22
StatePublished - Nov 14 2019

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Genome-wide suppressor screen identifies USP35/USP38 as therapeutic candidates for ciliopathies'. Together they form a unique fingerprint.

Cite this