Abstract
Background: Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. Methods: We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. Results: Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). Conclusions: Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates).
Original language | English (US) |
---|---|
Article number | 603 |
Journal | BMC Infectious Diseases |
Volume | 22 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
Funding
This work was funded by American Heart Association grant 837089 (T.K.), Chicago Biomedical Consortium Catalyst Award (A.H.), and National Institute of Health grants: T32 AI007476 (T.K.), R01 AI118257 (A.H.), R21 AI153953 (A.H.), K24 AI104831 (A.H.), R21 AI164254 (A.H.), U19 AI35964 (A.H.), T32 AI095207 (R.M.). The funding sources had no influence on the design of the study and collection, analysis, interpretation of data, and writing of the manuscript.
Keywords
- Bacteremia
- Hypervirulent Klebsiella
- Klebsiella pneumoniae
- Pathogenesis
- Whole-genome sequencing
ASJC Scopus subject areas
- Infectious Diseases
Fingerprint
Dive into the research topics of 'Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates'. Together they form a unique fingerprint.Datasets
-
Additional file 20 of Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
Kochan, T. J. (Creator), Nozick, S. H. (Creator), Medernach, R. L. (Creator), Cheung, B. H. (Creator), Gatesy, S. W. M. (Creator), Lebrun-Corbin, M. (Creator), Mitra, S. D. (Creator), Khalatyan, N. (Creator), Krapp, F. (Creator), Qi, C. (Creator), Ozer, E. A. (Creator) & Hauser, A. R. (Creator), figshare, 2022
DOI: 10.6084/m9.figshare.20267550, https://springernature.figshare.com/articles/dataset/Additional_file_20_of_Genomic_surveillance_for_multidrug-resistant_or_hypervirulent_Klebsiella_pneumoniae_among_United_States_bloodstream_isolates/20267550
Dataset
-
Additional file 18 of Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
Kochan, T. J. (Creator), Nozick, S. H. (Creator), Medernach, R. L. (Creator), Cheung, B. H. (Creator), Gatesy, S. W. M. (Creator), Lebrun-Corbin, M. (Creator), Mitra, S. D. (Creator), Khalatyan, N. (Creator), Krapp, F. (Creator), Qi, C. (Creator), Ozer, E. A. (Creator) & Hauser, A. R. (Creator), figshare, 2022
DOI: 10.6084/m9.figshare.20267541, https://springernature.figshare.com/articles/dataset/Additional_file_18_of_Genomic_surveillance_for_multidrug-resistant_or_hypervirulent_Klebsiella_pneumoniae_among_United_States_bloodstream_isolates/20267541
Dataset
-
Additional file 19 of Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
Kochan, T. J. (Creator), Nozick, S. H. (Creator), Medernach, R. L. (Creator), Cheung, B. H. (Creator), Gatesy, S. W. M. (Creator), Lebrun-Corbin, M. (Creator), Mitra, S. D. (Creator), Khalatyan, N. (Creator), Krapp, F. (Creator), Qi, C. (Creator), Ozer, E. A. (Creator) & Hauser, A. R. (Creator), figshare, 2022
DOI: 10.6084/m9.figshare.20267544, https://springernature.figshare.com/articles/dataset/Additional_file_19_of_Genomic_surveillance_for_multidrug-resistant_or_hypervirulent_Klebsiella_pneumoniae_among_United_States_bloodstream_isolates/20267544
Dataset