@article{e8bbfc68a293421f931c5fe6d184f253,
title = "Giant two-dimensional ferromagnetic moments on metallic ovelayers and interfaces",
abstract = "Giant two-dimensional ferromagnetic moments are predicted for monolayers of 3d bcc transition metals as overlayers or sandwiched with noble or simple metals. The isolation of the interface states is the main mechanism behind these phenomena. Comparisons are made with results for transition metal-transition metal interfaces.",
author = "Fu, {C. L.} and Freeman, {A. J.}",
note = "Funding Information: tween noble and transitionm etals.W e need to emphasise that in all cases reportedh ere the spin-polarized state has a lower total energy than the paramagnetic state and the charget ransfere ffectb etweenn oble and transitionm etalsi s small (less than 0.1 e). Moreover,a surprisingre sulti s that a sizeablem oment( about0 .1~) is induced onto the noble metal sites adjacentt o the magnetictr ansitionm etallayers. There have been some experimentaaln d other theoretical investigationosf the magneticp ropertieos f over-layers on non-magneticsu bstratesF. or example: (1) experimentasl tudies on the epitaxity and electronic structureso f Cr on on Au(100) \[7\]i ndicatethe per-sistenceo f Cr surfaces tates( whichare magnetica) t the interface;( 2) photoemissiosnp ectrao f Fe on Ag(100) \[9\s] how that the monolayefri lm is ferromagnetwici th a similar local momenta s that of bulk Fe; and (3) extensive studies \[9,10\o]f magneticf ilms (e.g. Fe, Co, Gd, etc.) in contactw ith simple or noble metals films find no magnetic{"} dead layers{"} or give no evidenceo f a proximitye ffect.On the theoreticasli de, a very similar result for the magnetizatioonf Fe/Ag(100) was obtained by Richter et al. \[11\]u sing the local orbital method; however a considerablyla rge magnetic moment (3.6/~) for a Cr monolayeor n Fe(100)w as found by Victoria and Falicov \[12\]u sing a parameterized tight-bindinsgc heme. Finally, we must emphasizeth att hesep redictionos f strongly enhanced2 D magnetismt,h us far on only a fractiono f variousc ombinationpso ssible,a re part of a growing literaturew hich indicatest he range and wealth of magneticp henomenaav ailablef or experimentainl - vestigationb y a varietyo f techniquesI.t also indicates the new predictivero le of all-electronlo cal spin density theory. Work supportedb y the ONR (Grant No. N00014-81-K-0438),a nd a computingg rant from the Univ. of Minnesota.W e are grateful to T. Oguchi for helpful discussiona nd to J.H. Weaverf or close cooperatioann d support. \[1\]S . Ohnishi,A .J. Freemana ndM. WeinertP, hys. Rev. B28 (1983)6 741.E . Wimmer,A .J. Freemana ndH. Krakauer, Phys. Rev. B 30 (1984)3 113.S . Ohnishi,C .L. Fu and A.J. FreemanJ,. Magn. Magn. Mat. 50 (1985)1 6. C.L. Fu and A.J. FreemanP, hys.Rev. B (1985). \[2\]C .L. Fu, A.J. Freemana ndT. Oguchi,P hys. Rev. Lett. 54 (1985)2 700. \[3\]E . Wimmer,H . KrakauerM, . Weinerta ndA.J. Phys. Rev. B 24 (1981)8 64. \[4\]U . von Barth and L. Hedin,J . Phys. C 5 (1972)1 629.L . Hedin and B.I. LundqvistJ,. Phys.C 4 (1971)2 064. \[5\]M .B. Brodskye t al., Solid StateC ommun4. 2 (1982)6 75. \[6\]W . Keunee t al., J. Appl. Phys.4 8 (1977)2 976. \[7\]G . Zajac, S.D. Bader and R.J. Friddle, Phys. Rev. B 31 (1975)4 947. \[8\]C . Binns et al., SurfaceS ci. 152( 1985)2 37. \[9\]R . Meservey,P .W. Tedron and V.R. Kalvey, J. Appl. Phys. 52 (1981) 1617. J.S. Moodera and R. Meservey. Phys. Rev. B 29 (1984)2 943. \[10\G] . BergmannJ., Magn. Magn. Mat. 35 (1983)6 8. \[11\R] . Richter,J .G. Gay, and J.R. Smith,P hys. Rev. Lett. 54 (1985)2 704. \[12\R] .H. Victora and L.M. Falicov, Phys. Rev. B 31 (1985) 7335.",
year = "1986",
month = feb,
doi = "10.1016/0304-8853(86)90248-9",
language = "English (US)",
volume = "54-57",
pages = "777--778",
journal = "Journal of Magnetism and Magnetic Materials",
issn = "0304-8853",
publisher = "Elsevier",
number = "PART 2",
}