Abstract
This paper improves the projected Hamilton's principle (PHP) formulation of nonsmooth mechanics. Central to the PHP is the use of a projection mapping, defined on the configuration space, to capture nonsmooth behaviors. To support applications of the PHP with multiple impact times and locations, we define mild topological assumptions under which nonsmooth mechanical systems can be transformed to a prescribed normal form. In normal form coordinates, we provide a globally valid projection for use in the PHP. For systems that do not permit the transformation to normal form, we examine the use of constrained coordinates and incorporate holonomic constraints into the PHP. Lastly, as a preview of future developments of the PHP, we discuss the application of the method on compact manifolds.
Original language | English (US) |
---|---|
Article number | 6426055 |
Pages (from-to) | 5572-5579 |
Number of pages | 8 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
DOIs | |
State | Published - 2012 |
Event | 51st IEEE Conference on Decision and Control, CDC 2012 - Maui, HI, United States Duration: Dec 10 2012 → Dec 13 2012 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization