Abstract
It is expected that a globally optimal restored multichannel image should be superior to a suboptimally restored image without the use of cross-channel information. In this paper, a regularized multichannel image restoration approach is proposed, which is based on the minimum multichannel regularized noise power criterion. Furthermore, no prior knowledge about the variance of the noise at each channel and a bound on the high frequency energy of the image are assumed, but this information is estimated based on the partially restored result at each step. The multichannel smoothing functional to be minimized is formulated to have a global minimizer with the proper choice of the multichannel regularization functionals. With this algorithm, the regularization functional for each channel is determined by incorporating not only within-channel information but also cross-channel information. It is also shown that the proposed multichannel smoothing functional is convex, and therefore, has a global minimizer. The proposed multichannel algorithm not only does not depend on initial conditions but is also shown to be much more computationally efficient than existing algorithms.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of SPIE - The International Society for Optical Engineering |
Pages | 232-243 |
Number of pages | 12 |
Volume | 2308 |
Edition | p 1 |
State | Published - Dec 1 1994 |
Event | Visual Communications and Image Processing '94 - Chicago, IL, USA Duration: Sep 25 1994 → Sep 29 1994 |
Other
Other | Visual Communications and Image Processing '94 |
---|---|
City | Chicago, IL, USA |
Period | 9/25/94 → 9/29/94 |
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Condensed Matter Physics