GLOW: Global Weighted Self-Attention Network for Web Search

Xuan Shan, Chuanjie Liu, Yiqian Xia, Qi Chen, Yusi Zhang, Kaize Ding, Yaobo Liang, Angen Luo, Yuxiang Luo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Deep matching models aim to facilitate search engines retrieving more relevant documents by mapping queries and documents into semantic vectors in the first-stage retrieval. When leveraging BERT as the deep matching model, the attention score across two words are solely built upon local contextualized word embeddings. It lacks prior global knowledge to distinguish the importance of different words, which has been proved to play a critical role in information retrieval tasks. In addition to this, BERT only performs attention across sub-words tokens which weakens whole word attention representation. We propose a novel Global Weighted Self-Attention (GLOW) network for web document search. GLOW fuses global corpus statistics into the deep matching model. By adding prior weights into attention generation from global information, like BM25, GLOW successfully learns weighted attention scores jointly with query matrix Q and key matrix K. We also present an efficient whole word weight sharing solution to bring prior whole word knowledge into sub-words level attention. It aids Transformer to learn whole word level attention. To make our models applicable to complicated web search scenarios, we introduce combined fields representation to accommodate documents with multiple fields even with variable number of instances. We demonstrate GLOW is more efficient to capture the topical and semantic representation both in queries and documents. Intrinsic evaluation and experiments conducted on public data sets reveal GLOW to be a general framework for document retrieve task. It significantly outperforms BERT and other competitive baselines by a large margin while retaining the same model complexity with BERT. The source code is available at https://github.com/GLOW-deep/GLOW.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
EditorsYixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages519-528
Number of pages10
ISBN (Electronic)9781665439022
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States
Duration: Dec 15 2021Dec 18 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Conference

Conference2021 IEEE International Conference on Big Data, Big Data 2021
Country/TerritoryUnited States
CityVirtual, Online
Period12/15/2112/18/21

Keywords

  • deep matching models
  • global weight representation
  • transformer models
  • web search

ASJC Scopus subject areas

  • Information Systems and Management
  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Information Systems

Fingerprint

Dive into the research topics of 'GLOW: Global Weighted Self-Attention Network for Web Search'. Together they form a unique fingerprint.

Cite this