Gradient echo quantum memory in warm atomic vapor

Olivier Pinel, Mahdi Hosseini, Ben M. Sparkes, Jesse L. Everett, Daniel Higginbottom, Geoff T. Campbell, Ping Koy Lam, Ben C. Buchler*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.

Original languageEnglish (US)
Article numbere50552
JournalJournal of Visualized Experiments
Volume2013
Issue number81
DOIs
StatePublished - Nov 2013

Keywords

  • Gas cell
  • Gradient echo memory (GEM)
  • Issue 81
  • Optical memory
  • Photon echo
  • Physics
  • Quantum memory
  • Rubidium vapor

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology
  • General Neuroscience

Fingerprint

Dive into the research topics of 'Gradient echo quantum memory in warm atomic vapor'. Together they form a unique fingerprint.

Cite this